Mol Pain
-
Paw carrageenan induces activation of phosphatidylinositol 3-kinase (PI-3K) and Akt in dorsal horn neurons in addition to induction of pain behavior. Spinal PI-3K activation is also thought to be required for inflammation-induced trafficking of GluA1, AMPA receptor subunits, into plasma membranes from cytosol. Phosphorylation of Akt has a unique time course. It occurs first in the superficial dorsal horn (0.75 h), then soon dissipates and is followed an hour later by Akt phosphorylation in deeper dorsal horn laminae, primarily lamina V. Initially, we wished to determine if Akt phosphorylation in the deeper laminae were dependent on the presence of lamina I, neurokinin receptor bearing projection neurons. As the study progressed, our aims grew to include the question, whether carrageenan-induced GluA1 subunit trafficking was downstream of Akt phosphorylation. ⋯ We infer from these data that 1) phosphorylation of Akt in the deep dorsal horn is dependent on prior activation of NK1 receptor bearing cells in superficial dorsal horn, and 2) there are parallel spinal intracellular cascades initiated by the carrageenan injection downstream of PI-3K activation, including one containing Akt and another involving GluA1 trafficking into neuronal plasma membranes that separately lead to enhanced pain behavior. These results imply that the two pathways downstream of PI-3K can be activated separately and therefore should be able to be inhibited independently.
-
The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. ⋯ The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.
-
Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH) critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. ⋯ Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.
-
In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. ⋯ Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.
-
Minocycline markedly reduces acute visceral nociception via inhibiting neuronal ERK phosphorylation.
Minocycline prevents the development of neuropathic and inflammatory pain by inhibiting microglial activation and postsynaptic currents. But, how minocycline obviates acute visceral pain is unclear. The present study investigated whether minocycline had an any antinociceptive effect on acetic acid-induced acute abdominal pain after intraperitoneal (i.p.) administration of saline or minocycline 1 hour before acetic acid injection (1.0%, 250 μl, i.p.). ⋯ These results demonstrate that minocycline effectively inhibits acetic acid-induced acute abdominal nociception via the inhibition of neuronal p-ERK expression in the spinal cord, and that minocycline may have therapeutic potential in suppressing acute abdominal pain.