Mol Pain
-
The aim of this study was to predict key genes and their relationships for anxiety and nociceptive sensitivity related to Comt1 genetype. ⋯ Ego network analysis was a useful and comprehensive method for biomarkers screening. Several modules such as module 3 and module 36 were important subnetworks. Potential genes in these modules including ADCYs, GNAI1, DRD2, PNOC, CCR2, DRD2, and LPAR1 might be important genes in the research of anxiety and nociceptive sensitivity.
-
Hyperbaric oxygen (HBO) therapy has been suggested to palliate neuropathic pain, but the mechanisms involved are not well understood. This study explored the involvement of microglial mitophagy via HBO relative to neuropathic pain therapy. ⋯ HBO therapy palliated CCI-induced neuropathic pain in rats by upregulating microglial mitophagy. These results could serve as guidelines to improve neuropathic pain therapy using HBO to maximize therapeutic efficiency.
-
Phosphatidylinositol 4-phosphate 5-kinase type 1 gamma (Pip5k1c) generates phosphatidylinositol 4,5-bisphosphate, also known as PI(4,5)P2 or PIP2. Many pronociceptive signaling pathways and receptor tyrosine kinases signal via PIP2 hydrolysis. Previously, we found that pain signaling and pain sensitization were reduced in Pip5k1cþ/ global heterozygous knockout mice. Here, we sought to evaluate the extent to which dorsal root ganglia selective deletion of Pip5k1c affected nociception in mice. ⋯ Tamoxifen induced high efficiency deletion of PIP5K1C in dorsal root ganglia and slightly reduced PIP5K1C in spinal cord and brain in Brn3a-Cre-ERT2 Pip5k1cfl/fl (Brn3a cKO) mice while PIP5K1C was selectively deleted in dorsal root ganglia with no changes in spinal cord or brain in Advillin-Cre-ERT2 Pip5k1cfl/fl (Advil cKO) mice. Acute thermosensation and mechanosensation were not altered in either line relative to wild-type mice. However, thermal hypersensitivity and mechanical allodynia recovered more rapidly in Brn3a cKO mice, but not Advil cKO mice, following hind paw inflammation. These data collectively suggest that PIP5K1C regulates nociceptive sensitization in more regions of the nervous system than dorsal root ganglia alone.
-
Background Although we have previously reported that intravenous resveratrol administration inhibits the nociceptive neuronal activity of spinal trigeminal nucleus caudalis neurons, the site of the central effect remains unclear. The aim of the present study was to examine whether acute intravenous resveratrol administration in the rat attenuates central glutamatergic transmission of spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation in vivo, using extracellular single-unit recordings and microiontophoretic techniques. Results Extracellular single-unit recordings using multibarrel electrodes were made from the spinal trigeminal nucleus caudalis wide dynamic range neurons responding to orofacial mechanical stimulation in pentobarbital anesthetized rats. ⋯ These inhibitory effects lasted approximately 20 min. The relative magnitude of inhibition by resveratrol of the glutamate-evoked spinal trigeminal nucleus caudalis wide dynamic range neuronal discharge frequency was similar to that for N-methyl-D-aspartate iontophoretic application. Conclusion These results suggest that resveratrol suppresses glutamatergic neurotransmission of the spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation via the N-methyl-D-aspartate receptor in vivo, and resveratrol may be useful as a complementary or alternative therapeutic agent for the treatment of trigeminal nociceptive pain.
-
Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). ⋯ Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue in P. gingivalis-induced periodontitis.