Mol Pain
-
Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. ⋯ Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and phosphorylated mitogen-activated protein kinase upregulation. Conclusions Our study suggests that remifentanil-induced postoperative hyperalgesia can be relieved by intraoperative electroacupuncture via inhibiting the activation of spinal glial cells, the upregulation of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases.
-
Peripheral somatosensory neurons are frequently exposed to mechanical forces. Strong stimuli result in neuronal activation of high-threshold mechanosensory afferent neurons, even in the absence of tissue damage. Among these neurons, fast-conducting nociceptors (A-fiber high-threshold mechanoreceptors (AHTMRs)) are normally resistant to sustained activation, transiently encoding the mechanical stimulus intensity but not its full duration. ⋯ Moreover, this phenomenon appears to be unique to this subset of afferent neurons and is absent in slow-conducting C-mechanonociceptors (C-fiber high-threshold mechanoreceptors) and rapidly adapting fast-conducting low-threshold mechanoreceptors. Furthermore, this mechanism for rapid adaptation and reducing ongoing input is ablated by repeated strong stimuli and in sensitized AHTMRs after chronic neuropathic injury. Further studies to understand the underling molecular mechanisms behind this phenomenon and their modulation during the development of pathological conditions may provide new targets to control nociceptive hyperexcitability and chronic pain.
-
Hyperbaric oxygen therapy is increasingly used in adjuvant therapies to treat neuropathic pain. However, the specific targets of hyperbaric oxygen treatment in neuropathic pain remain unclear. Recently, we found that hyperbaric oxygen therapy produces an antinociceptive response via the kindlin-1/wnt-10a signaling pathway in a chronic pain injury model in rats. ⋯ Our findings demonstrate that kindlin-1 is a key protein in the action of hyperbaric oxygen therapy in the treatment of neuropathic pain. Indeed, interference with kindlin-1 may be a drug target for reducing the neuroinflammatory responses of the glial population in neuropathic pain.
-
Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. ⋯ We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.
-
We recently demonstrated that brain natriuretic peptide is expressed in the dorsal root ganglia, and that brain natriuretic peptide is required for normal detection of pruritogens. We further showed that the receptor for brain natriuretic peptide, natriuretic peptide receptor A, is present in the spinal cord, and elimination of these neurons profoundly attenuates scratching to itch-inducing compounds. However, the potential modulatory roles of brain natriuretic peptide in nociception, inflammation, and neuropathic mechanisms underlying the sensation of pain have not been investigated in detail. ⋯ These results demonstrate that brain natriuretic peptide is not essential for pain-related behaviors.