Mol Pain
-
Chronic constriction injury of the sciatic nerve in rats causes peripheral neuropathy leading to pain-like behaviors commonly seen in humans. Neuropathy is a leading cause of neuropathic pain, which involves a complex cellular and molecular response in the peripheral nervous system with interactions between neurons, glia, and infiltrating immune cells. In this study, we utilize a nonsteroidal anti-inflammatory drug -loaded nanoemulsion to deliver the cyclooxygenase-2 inhibitor, Celecoxib, directly to circulating monocytes following nerve injury, which provides long-lasting pain relief. ⋯ Using the protein annotation through evolutionary relationship classification system, we have revealed pain-related signaling pathways and underlying biological mechanisms involved in the neuroinflammatory response. Quantitative polymerase chain reaction validation confirms expression changes for several genes. This study shows that by directly inhibiting cyclooxygenase-2 activity in infiltrating macrophages at the injured sciatic nerve, there is an associated change in the transcriptome in the cell bodies of the dorsal root ganglia.
-
Little is known about the role of epigenetic modification in axon regeneration following peripheral nerve injury. The purpose of the present study was to investigate the role of long non-coding RNAs (lncRNAs) in the regulation of axon regeneration. We used bioinformatics to perform microarray analysis and screened total 476 lncRNAs and 129 microRNAs (miRNAs) of differentially expressed genes after sciatic nerve injury in mice. lncRNA-GM4208 and lncRNA-GM30085 were examined, and the changes in lncRNA expression in the L4-L6 dorsal root ganglia (DRG) following sciatic nerve crush injury were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of lncRNAs in the DRG changed, indicating that they might be related to nerve regeneration in the DRG following peripheral nerve injury.
-
Neuropathic pain can be generated by chronic compression of dorsal root ganglion (CCD). Stimulation of primary motor cortex can disrupt the nociceptive sensory signal at dorsal root ganglion level and reduce pain behaviors. But the mechanism behind it is still implicit. ⋯ In vivo extracellular recording of the ventral posterolateral thalamus, viral expression in the primary motor cortex, and protein kinase C gamma expression in dorsal root ganglion were investigated. So, optical cortico-thalamic inhibition by motor cortex stimulation can improve neuropathic pain behaviors in CCD animal, and knocking down of protein kinase C gamma plays a conducive role in the process. This study provides feasibility for in vivo optogenetic stimulation on primary motor cortex of dorsal root ganglion-initiated neuropathic pain.