Mol Pain
-
Although elevated estradiol levels facilitate chronic pelvic pain in animal models, it remains to be determined whether sex steroid levels are altered in a cross-section of women with chronic pelvic pain (CPP) and those at-risk for developing CPP. We sought to determine if sex steroid levels are increased in women with menstrual pain and whether those changes were more extreme in two groups of women with worsened pelvic pain profiles: a) dysmenorrhea plus evidence of bladder pain sensitivity and b) bladder pain syndrome. Serum samples were collected during the mid-luteal phase to measure estradiol, progesterone, testosterone, and sex hormone-binding globulin. ⋯ Levels of pain sensitivity and mood were different across the groups, but the only significant relationship to sex steroids was that sex hormone-binding globulin was correlated to somatic symptoms (r = 0.26, p = 0.03). These findings show women potentially at-risk for CPP and women with diagnosed CPP exhibit altered circulating levels of sex steroids. Because these hormonal differences appear to be independent of mood or pain sensitivity, the role of sex steroids in the emergence of CPP may be via sensitization of visceral afferents.
-
Emerging evidence suggests mild traumatic brain injury related headache (MTBI-HA) is a form of neuropathic pain state. Previous supraspinal mechanistic studies indicate patients with MTBI-HA demonstrate a dissociative state with diminished levels of supraspinal prefrontal pain modulatory functions and enhanced supraspinal sensory response to pain in comparison to healthy controls. However, the relationship between supraspinal pain modulatory functional deficit and severity of MTBI-HA is largely unknown. ⋯ In the moderate-headache group, a significant (T = -3.05, p < 0.01) decrease in resting state activity was observed in the left superior parietal cortex when compared to the mild-headache group. In the severe-headache group, significant decreases in resting state supraspinal activities in the right insula (T = -3.46, p < 0.001), right premotor cortex (T = -3.30, p < 0.01), left premotor cortex (T = -3.84, p < 0.001), and left parietal cortex (T = -3.94, p < 0.0001), and an increase in activity in the right secondary somatosensory cortex (T = 4.05, p < 0.0001) were observed when compared to the moderate-headache group. The results of the study suggest that the increase in MTBI-HA severity may be associated with an imbalance in the supraspinal pain network with decline in supraspinal pain modulatory function and enhancement of sensory/pain decoding.
-
Cortical long-term potentiation (LTP) serves as a cellular model for chronic pain. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical LTP in the anterior cingulate cortex (ACC). Genetic deletion of AC1 or pharmacological inhibition of AC1 blocked behavioral allodynia in animal models of neuropathic and inflammatory pain. ⋯ Genetic deletion of AC1 also reduced allodynia responses in models of neuropathic pain and chronic inflammation pain in adult female mice. In brain slices of adult female mice, bath application of NB001(20 μM) blocked the induction of LTP in ACC. Our results indicate that calcium-stimulated AC1 is required for injury-related cortical LTP and behavioral allodynia in both sexes of adult animals, and NB001 can be used as a potential therapeutic drug for treating neuropathic and inflammatory pain in man and woman.
-
Pain sensitivity differs individually, but the mechanisms and genetic factors that underlie these differences are not fully understood. To investigate genetic factors that are involved in sensing cold pain, we applied a cold-induced pain test and evaluated protease-activated receptor 2 (PAR2/F2RL1) and transient receptor potential melastatin 8 (TRPM8), which are related to pain. We statistically investigated the associations between genetic polymorphisms and cold pain sensitivity in 461 healthy patients who were scheduled to undergo cosmetic orthognathic surgery for mandibular prognathism. ⋯ We also found a significant association between cold pain sensitivity and the rs12992084 polymorphism of the TRPM8 gene. Carriers of the minor A allele of the rs2243057 polymorphism of PAR2 and minor C allele of the rs12992084 polymorphism of TRPM8 exhibited a longer latency to pain perception in the cold-induced pain test, reflecting a decrease in cold pain sensitivity. These results suggest that genetic polymorphisms of both PAR2 and TRPM8 are involved in individual differences in cold pain sensitivity.
-
Neuropathic injury is accompanied by chronic inflammation contributing to the onset and maintenance of pain after an initial insult. In addition to their roles in promoting immune cell activation, inflammatory mediators like secretory phospholipase A2 (sPLA2) modulate nociceptive and excitatory neuronal signaling during the initiation of pain through hydrolytic activity. Despite having a known role in glial activation and cytokine release, it is unknown if sPLA2 contributes to the maintenance of painful neuropathy and spinal hyperexcitability later after neural injury. ⋯ Spinal sPLA2 inhibition at day 7 abolishes behavioral sensitivity, reduces both evoked and spontaneous neuronal firing in the spinal cord, and restores the distribution of neuronal phenotypes to those of control conditions. Inhibiting spinal sPLA2 also increases intracellular glutamate concentrations and restores spinal expression of GLAST, GLT1, mGluR5, and GluR1 to uninjured expression with no effect on NR1. These findings establish a role for spinal sPLA2 in maintaining pain and central sensitization after neural injury and suggest this may be via exacerbating glutamate excitotoxicity in the spinal cord.