Mol Pain
-
Effects of Fu's Subcutaneous Needling on Mitochondrial Structure and Function in Rats with Sciatica.
To observe the effects of Fu's subcutaneous needling (FSN) and acupuncture treatment on the mitochondrial structure and function of the skeletal muscle tissue of rats with sciatica. Forty Sprague-Dawley rats were divided into control, model, acupuncture, and FSN groups (10 each) according to a random number table. The control group was left untreated. ⋯ The state of mitochondria in the FSN group was close to that in the control group and was remarkably better than that in the acupuncture group. The activities of mitochondrial CS and respiratory chain complex II in the skeletal muscle of the treated rats decreased compared with the control group (p < 0.05), and their levels were better in the FSN group than in the acupuncture group (p < 0.05). FSN treatment for 1 week considerably improved the pain thresholds and improved the skeletal muscle mitochondrial ultrastructure and mitochondrial function in rats with sciatica.
-
Development of chronic pain has been attributed to dysfunctional GABA signaling in the spinal cord. Direct pharmacological interventions on GABA signaling are usually not very efficient and often accompanied by side effects due to the widespread distribution of GABA receptors in CNS. Transplantation of GABAergic neuronal cells may restore the inhibitory potential in the spinal cord. ⋯ We observed beneficial effects of the grafted cells in reducing hypersensitivity in all grafted animals, especially potent in the recombinant group. The level of pain-related cytokines was reduced in the grafted animals and correlation between these pain markers and actual behavior was indicated. This study demonstrated the feasibility of recombinant cell transplantation in the management of chronic pain.
-
Background: Accumulating evidence shows that N6-methyladenosine (m6A) modulators contribute to the process of chronic pain. However, the exact mechanisms of m6A writers involved in visceral hypersensitivity of Irritable bowel syndrome (IBS) remain unclear. This article aimed to reveal a new mechanism for the progression of IBS. ⋯ Moreover, YTHDC1, the only m6A-associated protein predicted by bioinformatics to bind to circKcnk9, modulated visceral hypersensitivity through regulating the nuclear export of circKcnk9 in an m6A-dependent manner. Notably, FISH data suggested that the increased nuclear staining of circKcnk9 caused by siYTHDC1 could be recovered by overexpression of YTHDC1 wild type (WT) but not YTHDC1 negative control (NC) in PC12 cells. Conclusions: Our findings reveal a new regulatory mechanism in progress of IBS, that is, METTL3 modulates visceral hypersensitivity through regulating the nuclear export of circKcnk9 in YTHDC1-dependent manner.
-
Chronic pain increases the risk of developing anxiety, with limbic areas being likely neurological substrates. Despite high clinical relevance, little is known about the precise behavioral, hormonal, and brain neuroplastic correlates of anxiety in the context of persistent pain. Previous studies have shown that decreased nociceptive thresholds in chronic pain models are paralleled by anxiety-like behavior in rats, but there are conflicting ideas regarding its effects on the stress response and circulating corticosterone levels. ⋯ Global DNA methylation was decreased in the amygdala, with no changes in DNMT3a abundance in any of the regions examined. Persistent inflammatory pain promotes anxiety -like behaviors, HPA axis activation, and epigenetic regulation through DNA methylation in the amygdala. These findings describe a molecular mechanism that links pain and stress in a well-characterized rodent model.
-
Pain involves both sensory and affective dimensions. The amygdala is a key player in linking nociceptive stimuli to negative emotional behaviors or affective states. Relief of pain is rewarding and activates brain reward circuits. ⋯ Activation of the VTA-CeA neural pathway using optogenetic approaches relieved incisional pain. Administration of a D2 receptor agonist reversed the pain relief elicited by light-induced activation of the VTA-CeA pathway. These findings indicate that the VTA-CeA circuit is involved in pain relief in mice via dopamine receptor D2 in the CeA.