Mol Pain
-
While opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4. ⋯ In the present in vitro patch-clamp electrophysiology experiments, we demonstrate that low dose morphine directly sensitizes human as well as rodent dorsal root ganglion (DRG) neurons, an effect of this opioid analgesic that is antagonized by LPS-RS Ultrapure, a selective TLR4 antagonist. We found that low concentration (100 nM) of morphine reduced rheobase in human (by 36%) and rat (by 26%) putative C-type nociceptors, an effect of morphine that was markedly attenuated by preincubation with LPS-RS Ultrapure. Our findings support the suggestion that in humans, as in rodents, OIH is mediated by the direct action of opioids at TLR4 on nociceptors.
-
Introduction: The brain's reward system (RS) reacts differently to pain and its alleviation. This study examined the correlation between RS activity and behavior during both painful and pain-free periods in individuals with primary dysmenorrhea (PDM) to elucidate their varying responses throughout the menstrual cycle. Methods: Ninety-two individuals with PDM and 90 control participants underwent resting-state functional magnetic resonance imaging (rsfMRI) scans during their menstrual and peri-ovulatory phases. ⋯ Discussion: Our study highlights the pivotal role of the RS in dysmenorrhea management, exhibiting varied responses between menstrual discomfort and non-painful periods among individuals with PDM. During menstruation, the RS triggers mechanisms for pain avoidance and cognitive coping strategies, while it transitions to processing rewards during the peri-ovulatory phase. This demonstrates the flexibility of the RS in adapting to the recurring pain experienced by those with PDM.
-
Chondromalacia, characterized by the softening of cartilage, is a prevalent condition affecting joint health with complex etiology. The immune system's role in its pathogenesis has been implicated but remains to be fully elucidated. To address a critical knowledge gap, we conducted a two-sample Mendelian randomization analysis of 731 immune cell phenotypes, assessing parameters like fluorescence, cell count, and morphology. ⋯ This breakthrough sheds light on the pathophysiological mechanisms of the condition. The identification of protective and risk-associated immune cell phenotypes provides a foundation for further exploration of immunological mechanisms in chondromalacia and may pave the way for targeted interventions. Future research is warranted to validate these findings and explore their clinical implications.
-
Background. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. ⋯ SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. Conclusion. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.
-
Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. ⋯ Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.