Mol Pain
-
Oxaliplatin, the third-generation platinum compound, has evolved as one of the most important therapeutic agents in colorectal cancer chemotherapy. The main limiting factor in oxaliplatin treatment is painful neuropathy that is difficult to treat. This side effect has been studied for several years, but its full mechanism is still inconclusive, and effective treatment does not exist. Data suggest that oxaliplatin's initial neurotoxic effect is peripheral and oxidative stress-dependent. A spinal target is also suggested in its mechanism of action. The flavonoids rutin and quercetin have been described as cell-protecting agents because of their antioxidant, antinociceptive, and anti-inflammatory actions. We proposed a preventive effect of these agents on oxaliplatin-induced painful peripheral neuropathy based on their antioxidant properties. ⋯ Oxaliplatin induced painful peripheral neuropathy in mice, an effect that was prevented by rutin and quercetin. The mechanism of action of oxaliplatin appears to be, at least, partially oxidative stress-induced damage in dorsal horn neurons, with the involvement of lipid peroxidation and protein nitrosylation.
-
The mammalian target of rapamycin (mTOR) is known to regulate cell proliferation and growth by controlling protein translation. Recently, it has been shown that mTOR signaling pathway is involved in long-term synaptic plasticity. However, the role of mTOR under different pain conditions is less clear. ⋯ In the spinal cord, mTOR, p70 S6K and 4E-BP1 were observed to be activated in the ipsilateral and contralateral regions, peaking at 1-2 h and recovery at 24 h post-intraplantar (i.pl.) BmK I administration. In addition, intrathecal (i.t.) injection of rapamycin - a specific inhibitor of mTOR - was observed to result in the reduction of spontaneous pain responses and the attenuation of unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I. Thus, these results indicate that the mTOR signaling pathway is mobilized in the induction and maintenance of pain-activated hypersensitivity.
-
Cancer-associated pain is a major cause of poor quality of life in cancer patients and is frequently resistant to conventional therapy. Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. Moreover, these hematopoietic factors have been highly implicated in postsurgical pain, inflammatory pain and osteoarthritic pain. However, the molecular mechanisms via which G-/GMCSF bring about nociceptive sensitization and elicit pain are not known. ⋯ With integrative approach of bioinformatics, in vivo pharmacology and behavioral analyses, our results not only indicate that transcriptional control by G-/GMCSF signaling regulates a variety of established pain modulators, but also uncover a large number of novel targets, paving the way for translational analyses in the context of pain disorders.
-
The sigma-1 receptor (σ1R), an endoplasmic reticulum chaperone protein, is widely distributed and regulates numerous intracellular processes in neurons. Nerve injury alters the structure and function of axotomized dorsal root ganglion (DRG) neurons, contributing to the development of pain. The σ1R is enriched in the spinal cord and modulates pain after peripheral nerve injury. However, σ1R expression in the DRG has not been studied. We therefore characterized σ1R expression in DRGs at baseline and following spinal nerve ligation (SNL) in rats. ⋯ Our data show that σ1R is present in both sensory neurons and satellite cells in rat DRGs. Expression of σ1R is down-regulated in axotomized neurons as well as in their accompanying satellite glial cells, while neighboring uninjured neurons show a lesser down-regulation. Therefore, elevated σ1R expression in neuropathic pain is not an explanation for pain relief after σ1R blockade. This implies that increased levels of endogenous σ1R agonists may play a role, and diminished neuroprotection from loss of glial σ1R may be a contributing factor.
-
Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. ⋯ The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs to inhibit pain-related emotional-affective behaviors.