Mol Pain
-
CRPS is a painful, debilitating, and often-chronic condition characterized by various sensory, motor, and vascular disturbances. Despite many years of study, current treatments are limited by our understanding of the underlying mechanisms. Little is known on the molecular level concerning changes in gene expression supporting the nociceptive sensitization commonly observed in CRPS limbs, or how those changes might evolve over time. ⋯ Our data provide a global look at the transcriptional changes in the spinal cord that accompany the acute and chronic phases of CRPS as modeled in mice. Furthermore, it follows up on one of the top-regulated genes coding for CcL2 and validates its role in regulating nociception in the fracture/cast model of CRPS.
-
It has been demonstrated that angiotensin II (Ang II) participates in either the inhibition or the facilitation of nociceptive transmission depending on the brain area. Neuronal Ang II is locally synthesized not only in the brain, but also in the spinal cord. Though the spinal cord is an important area for the modulation of nociception, the role of spinal Ang II in nociceptive transmission remains unclear. Therefore, in order to elucidate the role of Ang II in nociceptive transmission in the spinal cord, we examined the effect of intrathecal (i.t.) administration of Ang II into mice. ⋯ Our data show that i.t. administration of Ang II induces nociceptive behavior accompanied by the activation of p38 MAPK signaling mediated through AT1 receptors. This observation indicates that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.
-
Cannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181. ⋯ Our work shows that both T-type channels as well as CB2 receptors play a role in the antinociceptive action of NMP-181, and also provides a novel avenue for suppressing chronic pain through novel mixed T-type/cannabinoid receptor ligands.
-
Both spinal and trigeminal somatosensory systems use the TRPM8 channel as a principal transducer for detecting cold stimuli. It is currently unclear whether this cold transducer may play a role in trigeminal neuropathic pain manifesting cold allodynia and hyperalgesia. In the present study, trigeminal neuropathy was induced by chronic constrictive nerve injury of the infraorbital nerve (ION-CCI). ⋯ When menthol was administered to ION-CCI rats, total contact time was further reduced and total contact number increased at the cooling temperatures. In contrast, after administration of capsazepine to ION-CCI rats, total contact time was significantly increased at the cooling temperatures. The behavioral outcomes support the idea that TRPM8 plays a role in cold allodynia and hyperalgesia following chronic trigeminal nerve injury.
-
Extracellular acidosis is a prominent feature of multiple pathological conditions, correlating with pain sensation. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are distributed throughout the central and peripheral nervous systems. Activation of ASICs, particularly ASIC3 and ASIC1a channels, by acidic pH and the resultant depolarization of nociceptive primary sensory neurons, participates in nociception. Agents that inhibit the activation of ASICs are thus expected to be analgesic. Here, we studied the effect of local anesthetic tetracaine on ASIC currents. ⋯ These findings disclose a potential new mechanism underlying the analgesic effects of local anesthetics, particularly in acidic conditions where their primary target (i.e. voltage-gated Na+ channel) has been suppressed by protons.