Mol Pain
-
Itch is one of the major somatosensory modalities. Some recent findings have proposed that gastrin releasing peptide (Grp) is expressed in a subset of dorsal root ganglion (DRG) neurons and functions as a selective neurotransmitter for transferring itch information to spinal cord interneurons. However, expression data from public databases and earlier literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC) whereas its family member neuromedin B (Nmb) is highly expressed in DRG neurons. These contradictory results argue that a thorough characterization of the expression of Grp and Nmb is warranted. ⋯ The majority of dSC Grp is synthesized locally in dorsal spinal cord neurons. On the other hand, Nmb is highly expressed in pain- and itch-sensing DRG neurons. Our findings provide direct anatomic evidence that Grp could function locally in the dorsal spinal cord in addition to its roles in DRG neurons and that Nmb has potential roles in nociceptive and itch-sensitive neurons. These results will improve our understanding about roles of Grp and Nmb in mediating itch sensation.
-
Paw carrageenan induces activation of phosphatidylinositol 3-kinase (PI-3K) and Akt in dorsal horn neurons in addition to induction of pain behavior. Spinal PI-3K activation is also thought to be required for inflammation-induced trafficking of GluA1, AMPA receptor subunits, into plasma membranes from cytosol. Phosphorylation of Akt has a unique time course. It occurs first in the superficial dorsal horn (0.75 h), then soon dissipates and is followed an hour later by Akt phosphorylation in deeper dorsal horn laminae, primarily lamina V. Initially, we wished to determine if Akt phosphorylation in the deeper laminae were dependent on the presence of lamina I, neurokinin receptor bearing projection neurons. As the study progressed, our aims grew to include the question, whether carrageenan-induced GluA1 subunit trafficking was downstream of Akt phosphorylation. ⋯ We infer from these data that 1) phosphorylation of Akt in the deep dorsal horn is dependent on prior activation of NK1 receptor bearing cells in superficial dorsal horn, and 2) there are parallel spinal intracellular cascades initiated by the carrageenan injection downstream of PI-3K activation, including one containing Akt and another involving GluA1 trafficking into neuronal plasma membranes that separately lead to enhanced pain behavior. These results imply that the two pathways downstream of PI-3K can be activated separately and therefore should be able to be inhibited independently.
-
Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the "headache circuit". Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. ⋯ We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.
-
The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. ⋯ The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.
-
Acute or chronic tissue damage induces an inflammatory response accompanied by pain and alterations in local tissue temperature. Recent studies revealed that the transient receptor potential A1 (TRPA1) channel is activated by a wide variety of substances that are released following tissue damage to evoke nociception and neurogenic inflammation. Although the effects of a noxious range of cold temperatures on TRPA1 have been rigorously studied, it is not known how agonist-induced activation of TRPA1 is regulated by temperature over an innocuous range centred on the normal skin surface temperature. This study investigated the effect of temperature on agonist-induced currents in human embryonic kidney (HEK) 293 cells transfected with rat or human TRPA1 and in rat sensory neurons. ⋯ These results indicate that warmth suppresses and desensitizes damage-sensing ion channel TRPA1. Such warmth-induced suppression of TRPA1 may also explain, at least in part, the mechanistic basis of heat therapy that has been widely used as a supplemental anti-nociceptive approach.