Mol Pain
-
Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. ⋯ Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the former two co-expressing CGRP, as well as in dorsal horn neurons in all three species. Functional implications of these findings include the cellular refinement of sensory information, in particular during the processing of pain.
-
Oxaliplatin is a key drug in the treatment of colorectal cancer, but it causes severe peripheral neuropathy. We previously reported that oxaliplatin (4 mg/kg, i.p., twice a week) induces mechanical allodynia in the late phase in rats, and that spinal NR2B-containing N-methyl-D-aspartate (NMDA) receptors are involved in the oxaliplatin-induced mechanical allodynia. In the present study, we investigated the involvement of Ca(2+)/calmodulin dependent protein kinase II (CaMKII), which is a major intracellular protein kinase and is activated by NMDA receptor-mediated Ca(2+) influx, in the oxaliplatin-induced mechanical allodynia in rats. ⋯ These results suggest that CaMKII is involved in the oxaliplatin-induced mechanical allodynia, and trifluoperazine may be useful for the treatment of oxaliplatin-induced peripheral neuropathy in clinical setting.
-
Antidepressants, which are widely used for treatment of chronic pain, are thought to have antinociceptive effects by blockade of serotonin and noradrenaline reuptake. However, these drugs also interact with various receptors such as excitatory glutamatergic receptors. Thermal hyperalgesia was induced by intrathecal injection of NMDA in rats. Paw withdrawal latency was measured after intrathecal injection of antidepressants. The effects of antidepressants on the NMDA and AMPA-induced responses were examined in lamina II neurons of rat spinal cord slices using the whole-cell patch-clamp technique. The effects of milnacipran followed by application of NMDA on pERK activation were also investigated in the spinal cord. ⋯ The antinociceptive effect of milnacipran may be dependent on the drug's direct modulation of NMDA receptors in the superficial dorsal horn. Furthermore, in addition to inhibiting the reuptake of monoamines, glutamate NMDA receptors are also important for analgesia induced by milnacipran.
-
Transforming growth factor beta (TGFβ) is upregulated in chronic inflammation, where it plays a key role in wound healing and promoting fibrosis. However, little is known about the peripheral effects of TGFβ on nociception. ⋯ TGFβ1 is an important and complex modulator of sensory neuronal function in chronic inflammation, providing a link between fibrosis and nociception and is a potentially novel target for the treatment of persistent pain associated with chronic pancreatitis.
-
The TRPM8 channel is a principal cold transducer that is expressed on some primary afferents of the somatic and cranial sensory systems. However, it is uncertain whether TRPM8-expressing afferent neurons have the ability to convey innocuous and noxious cold stimuli with sensory discrimination between the two sub-modalities. Using rat dorsal root ganglion (DRG) neurons and the patch-clamp recording technique, we characterized membrane and action potential properties of TRPM8-expressing DRG neurons at 24°C and 10°C. ⋯ In both TTXs/TRPM8 and TTXr/TRPM8 cells, voltage-activated outward K(+) currents were substantially inhibited at 10°C, and the cooling-sensitive outward currents resembled A-type K(+) currents. TTXs/TRPM8 neurons and TTXr/TRPM8 neurons were shown to fire action potentials at innocuous and noxious cold temperatures respectively, demonstrating sensory discrimination between innocuous and noxious cold by the two subpopulations of cold-sensing DRG neurons. The effects of cooling temperatures on voltage-gated Na(+) channels and A-type K(+) currents are likely to be contributing factors to sensory discrimination of cold by TTXs/TRPM8 and TTXr/TRPM8 afferent neurons.