Mol Pain
-
Cutaneous peripheral neuropathies have been associated with changes of the sensory fiber innervation in the dermis and epidermis. These changes are mediated in part by the increase in local expression of trophic factors. Increase in target tissue nerve growth factor has been implicated in the promotion of peptidergic afferent and sympathetic efferent sprouting following nerve injury. The primary source of nerve growth factor is cells found in the target tissue, namely the skin. Recent evidence regarding the release and extracellular maturation of nerve growth factor indicate that it is produced in its precursor form and matured in the extracellular space. It is our hypothesis that the precursor form of nerve growth factor should be detectable in those cell types producing it. To date, limitations in available immunohistochemical tools have restricted efforts in obtaining an accurate distribution of nerve growth factor in the skin of naïve animals and those with neuropathic pain lesions. It is the objective of this study to delineate the distribution of the precursor form of nerve growth factor to those cell types expressing it, as well as to describe its distribution with respect to those nerve fibers responsive to it. ⋯ We describe proNGF expression by non-neuronal cells over time after nerve injury as well as the association of NGF-responsive fibers to proNGF-expressing target tissues. ProNGF expression increases following nerve injury in those cell types previously suggested to express it.
-
Irritable bowel syndrome (IBS) is characterized by chronic visceral hyperalgesia (CVH) that manifested with persistent or recurrent abdominal pain and altered bowel movement. However, the pathogenesis of the CVH remains unknown. The aim of this study was to investigate roles of endogenous hydrogen sulfide (H2S) producing enzyme cystathionine beta-synthetase (CBS) and p65 nuclear factor-kappa B subunits in CVH. ⋯ The present results suggested that upregulation of CBS expression, which is mediated by activation of p65, contributes to NMD-induced CVH. This pathway might be a potential target for relieving CVH in patients with IBS.
-
Inflammation-induced sensitization of primary afferents is associated with a decrease in K(+) current. However, the type of K(+) current and basis for the decrease varies as a function of target of innervation. Because glabrous skin of the rat hindpaw is used often to assess changes in nociception in models of persistent pain, the purpose of the present study was to determine the type and extent to which K(+) currents contribute to the inflammation-induced sensitization of cutaneous afferents. Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion neurons from naïve and inflamed (3 days post complete Freund's adjuvant injection) rats were studied with whole cell and perforated patch techniques. ⋯ Results of this study provide additional support for the conclusion that it may be possible, if not necessary to selectively treat pain arising from specific body regions. Because a decrease in BK(Ca) current appears to contribute to the inflammation-induced sensitization of cutaneous afferents, BK(Ca) channel openers may be effective for the treatment of inflammatory pain.
-
Pharmacological activation of type-2 metabotropic glutamate receptors (mGlu2 receptors) causes analgesia in experimental models of inflammatory and neuropathic pain. Presynaptic mGlu2 receptors are activated by the glutamate released from astrocytes by means of the cystine/glutamate antiporter (System x(c)(-) or Sx(c)(-)). We examined the analgesic activity of the Sx(c)(-) activator, N-acetyl-cysteine (NAC), in mice developing inflammatory or neuropathic pain. ⋯ These data demonstrate that pharmacological activation of Sxc- causes analgesia by reinforcing the endogenous activation of mGlu2 receptors. NAC has an excellent profile of safety and tolerability when clinically used as a mucolytic agent or in the management of acetaminophen overdose. Thus, our data encourage the use of NAC for the experimental treatment of inflammatory pain in humans.
-
CREB has been reported to be activated by injury and is commonly used as marker for pain-related plasticity changes in somatosensory pathways, including spinal dorsal horn neurons and the anterior cingulate cortex (ACC). However no evidence has been reported to support the direct role of activated CREB in injury-related behavioral sensitization (or allodynia). ⋯ Furthermore, acute pain responses to noxious thermal stimuli were also not affected. Our results thus provide direct evidence that cortical CREB-mediated transcription contributes to behavioral allodynia in animal models of chronic inflammatory or neuropathic pain.