Mol Pain
-
Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. ⋯ The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state. Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN. These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.
-
Pain often accompanies cancer and most current therapies for treating cancer pain have significant unwanted side effects. Targeting nerve growth factor (NGF) or its cognate receptor tropomyosin receptor kinase A (TrkA) has become an attractive target for attenuating chronic pain. ⋯ These data suggest that, like therapies that target the cancer itself, the earlier that the blockade of TrkA occurs, the more effective the control of cancer pain and the tumor-induced remodeling of sensory nerve fibers. Developing targeted therapies that relieve cancer pain without the side effects of current analgesics has the potential to significantly improve the quality of life and functional status of cancer patients.
-
In pain processing, long term synaptic changes play an important role, especially during chronic pain. The immediate early gene Arc/Arg3.1 has been widely implicated in mediating long-term plasticity in telencephalic regions, such as the hippocampus and cortex. Accordingly, Arc/Arg3.1 knockout (KO) mice show a deficit in long-term memory consolidation. Here, we identify expression of Arc/Arg3.1 in the rat spinal cord using immunohistochemistry and in situ hybridization following pain stimuli. ⋯ We conclude that Arc/Arg3.1 is preferentially expressed in spinal enkephalinergic neurons after nociceptive stimulation. Therefore, our data suggest that Arc/Arg3.1 dependent long term synaptic changes in spinal pain transmission are a feature of anti-nociceptive, i.e. enkephalinergic, rather than pro-nociceptive neurons.
-
Spontaneous (non-evoked) pain is a major clinical symptom of neuropathic syndromes, one that is understudied in basic pain research for practical reasons and because of a lack of consensus over precisely which behaviors reflect spontaneous pain in laboratory animals. It is commonly asserted that rodents experiencing pain in a hind limb exhibit hypolocomotion and decreased rearing, engage in both reflexive and organized limb directed behaviors, and avoid supporting their body weight on the affected side. Furthermore, it is assumed that the extent of these positive or negative behaviors can be used as a dependent measure of spontaneous chronic pain severity in such animals. In the present study, we tested these assumptions via blinded, systematic observation of digital video of mice with nerve injuries (chronic constriction or spared nerve injury), and automated assessment of locomotor behavior using photocell detection and dynamic weight bearing (i.e., gait) using the CatWalk system. ⋯ We conclude that spontaneous neuropathic pain in mice cannot be assessed using any of these measures, and thus caution is warranted in making such assertions.
-
We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. ⋯ Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.