Mol Pain
-
We have shown functional expression of several TRP channels on human synovial cells, proposing significance in known calcium dependent proliferative and secretory responses in joint inflammation. The present study further characterizes synoviocyte TRP expression and activation responses to thermal and osmotic stimuli after pre-treatment with proinflammatory mediator tumor necrosis factor alpha (TNF-alpha, EC50 1.3221 x 10(-10) g/L). ⋯ TNF-alpha provides differentially enhanced synoviocyte TRPV1 and TRPV4 expression and [Ca2+]i response dependent on the TRP stimulus and time after exposure. Augmented relevance of TRPV1 and TRPV4 as inflammatory conditions persist would provide calcium mediated cell signaling required for pathophysiological responses of synoviocytes in inflammatory pain states.
-
Descending facilitation, from the brainstem, promotes spinal neuronal hyperexcitability and behavioural hypersensitivity in many chronic pain states. We have previously demonstrated enhanced descending facilitation onto dorsal horn neurones in a neuropathic pain model, and shown this to enable the analgesic effectiveness of gabapentin. Here we have tested if this hypothesis applies to other pain states by using a combination of approaches in a rat model of osteoarthritis (OA) to ascertain if 1) a role for descending 5HT mediated facilitation exists, and 2) if pregabalin (a newer analogue of gabapentin) is an effective antinociceptive agent in this model. Further, quantitative-PCR experiments were undertaken to analyse the alpha 2 delta-1 and 5-HT3A subunit mRNA levels in L3-6 DRG in order to assess whether changes in these molecular substrates have a bearing on the pharmacological effects of ondansetron and pregabalin in OA. ⋯ These data suggest descending serotonergic facilitation plays a role in mediating the brush and innocuous mechanical punctate evoked neuronal responses in MIA rats, suggesting an adaptive change in the excitatory serotonergic drive modulating low threshold evoked neuronal responses in MIA-induced OA pain. This alteration in excitatory serotonergic drive, alongside an increase in alpha 2 delta-1 mRNA levels, may underlie pregabalin's state dependent effects in this model of chronic pain.
-
The translocation of neuronal nitric oxide synthase (nNOS) from the cytosol to the membrane is functionally coupled to the activation of N-methyl-D-aspartate (NMDA) receptors at synapses. Whereas there is abundant evidence indicating that ATP and nitric oxide are involved in nociceptive transmission, whether nNOS is activated by ATP remains unknown. We recently established a fluorescence imaging system for examining nNOS translocation in PC12 cells expressing a yellow fluorescence protein-tagged nNOS N-terminal mutant, nNOSNT-YFP, and examined the effect of ATP on nNOS translocation using the system. ⋯ ATP is involved in nNOS translocation mediated by protein kinase C via activation of P2X and P2Y receptors and nNOS translocation may be an action mechanism of ATP in nocieptive processing in the spinal cord.
-
Central neurotensin (NT) administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin. ⋯ The present study provides the first demonstration that activation of NTS2 receptors produces analgesia in the persistent inflammatory pain model of formalin. The dichotomy between these two classes of compounds also indicates that both NTS1 and NTS2 receptors are involved in tonic pain inhibition and implies that these two NT receptors modulate the pain-induced behavioral responses by acting on distinct spinal and/or supraspinal neural circuits. In conclusion, development of NT agonists targeting both NTS1 and NTS2 receptors could be useful for chronic pain management.
-
Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. ⋯ Minocycline treatment also significantly attenuated OX-42 immunoreactivity, a marker of activated microglia, in the ipsilateral (P < 0.001) and contralateral (P < 0.01) spinal cord of SNL rats, compared to vehicle controls. Minocycline treatment significantly (P < 0.01) decreased levels of 2-AG and significantly (P < 0.01) increased levels of PEA in the ipsilateral spinal cord of SNL rats, compared to the contralateral spinal cord. Thus, activation of microglia affects spinal levels of endocannabinoids and related compounds in neuropathic pain states.