Mol Pain
-
A hallmark of many orofacial pain disorders is cold sensitivity, but relative to heat-related pain, mechanisms of cold perception and the development of cold allodynia are not clearly understood. Molecular mediators of cold sensation such as TRPM8 have been recently identified and characterized using in vitro studies. In this study we characterized operant behavior with respect to individually presented cold stimuli (24, 10, 2, and -4 degrees C) and in a thermal preference task where rats chose between -4 and 48 degrees C stimulation. We also evaluated the effects of menthol, a TRPM8 agonist, on operant responses to cold stimulation (24, 10, and -4 degrees C). Male and female rats were trained to drink sweetened milk while pressing their shaved faces against a thermode. This presents a conflict paradigm between milk reward and thermal stimulation. ⋯ Our results indicate a strong role for an affective component in processing of cold stimuli, more so than for heat, which is in concordance with human psychophysical findings. The induction of allodynia with menthol provides a model for cold allodynia. This study provides the basis for future studies involving orofacial pain and analgesics, and is translatable to the human experience.
-
Phasic and tonic inhibitions are two types of inhibitory activities involved in inhibitory processing in the CNS. In the spinal cord dorsal horn, phasic inhibition is mediated by both GABAergic and glycinergic inhibitory postsynaptic currents. ⋯ Analysis of charge transfer showed that the charges carried by tonic inhibitory currents were about 6 times of charges carried by phasic inhibitory currents. The prominent charge transfer by tonic inhibitory currents and their synaptic activity dependency suggest a significant role of tonic inhibition in sensory processing.
-
Changes in sodium channel activity and neuronal hyperexcitability contribute to neuropathic pain, a major clinical problem. There is strong evidence that the re-expression of the embryonic voltage-gated sodium channel subunit Nav1.3 underlies neuronal hyperexcitability and neuropathic pain. Here we show that acute and inflammatory pain behaviour is unchanged in global Nav1.3 mutant mice. ⋯ Again normal levels of neuropathic pain developed after nerve injury in both lines. Furthermore, ectopic discharges from damaged nerves were unaffected by the absence of Nav1.3 in global knock-out mice. Our data demonstrate that Nav1.3 is neither necessary nor sufficient for the development of nerve-injury related pain.
-
Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in Eanion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of Eanion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in Eanion affect firing rate modulation. ⋯ Reduction of Eanion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.
-
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain.