Mol Pain
-
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. ⋯ Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.
-
Nervous system manifestations caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of great concern. Neurological symptoms and the neurological effects induced by SARS-CoV-2, such as the loss of various sensory perceptions, indicate direct viral invasion into sensory neurons. Therefore, it is very important to identify the distribution of angiotensin-converting enzyme 2 (ACE2), the receptor of SARS-CoV-2, in human nervous system. ⋯ We demonstrated that Sudan Black B (SBB) remarkably reduced the massive lipofuscin-like autofluorescence and the immunofluorescence signal would be sharpened following the exposure compensation. Additionally, we confirmed that ACE2 was expressed in IB4+, CGRP+, and NF200+ sensory subpopulations. The mapping of ACE2 distribution in hDRG would facilitate the understanding of sensory disorder induced by SARS-CoV-2.
-
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. We focused on solute carrier family 17 member 9 (SLC17A9)/vesicular nucleotide transporter (VNUT) and purinergic receptor P2Y12 (P2RY12), both of which have been associated with neuropathic pain and pain transduction signaling in the trigeminal ganglion in rodents. ⋯ Therefore, these carriers may be more susceptible to PTP. These results suggest that specific genetic polymorphisms of the SLC17A9 and P2RY12 genes are involved in PTP. This is the first report on genes that are associated with PTP in humans.
-
Bone cancer pain (BCP) seriously affects the quality of life; however, due to its complex mechanism, the clinical treatment was unsatisfactory. Recent studies have showed several Rac-specific guanine nucleotide exchange factors (GEFs) that affect development and structure of neuronal processes play a vital role in the regulation of chronic pain. P-Rex2 is one of GEFs that regulate spine density, and the present study was performed to examine the effect of P-Rex2 on the development of BCP. ⋯ Meanwhile, P-Rex2 knockdown reversed BCP-enhanced AMPA receptor (AMPAR)-induced current in dorsal horn neurons. In summary, this study suggested that P-Rex2 regulated GluR1-containing AMPAR trafficking and spine morphology via Rac1/pGluR1 pathway is a fundamental pathogenesis of BCP. Our findings provide a better understanding of the function of P-Rex2 as a possible therapeutic target for relieving BCP.
-
Neurostimulation therapies are frequently used in patients with chronic pain conditions. They emerged from Gate Control Theory (GCT), which posits that Aβ-fiber activation recruits superficial dorsal horn (SDH) inhibitory networks to "close the gate" on nociceptive transmission, resulting in pain relief. However, the efficacy of current therapies is limited, and the underlying circuits remain poorly understood. ⋯ Our findings suggest that Aβ-fiber stimulation initially recruits both excitatory and inhibitory populations but has divergent effects on their activity, providing a foundation for understanding the analgesic effects of neurostimulation devices. Perspective: This article used microscopy to characterize the responses of mouse spinal cord cells to stimulation of non-painful nerve fibers. These findings deepen our understanding of how the spinal cord processes information and provide a foundation for improving pain-relieving therapies.