Mol Pain
-
Alcohol use disorder (AUD) is a major health problem that causes millions of deaths annually world-wide. AUD is considered to be a chronic pain disorder, that is exacerbated by alcohol withdrawal, contributing to a high (∼80%) relapse rate. Chronic alcohol consumption has a marked impact on the gut microbiome, recognized to have a significant effect on chronic pain. ⋯ After probiotics were removed from the drinking water, nociceptive thresholds gradually decreased in these two groups, although they remained higher than the group not treated with probiotic (21 days after ending alcohol feeding). These observations suggest that modification of gut microbiota through probiotic feeding has a marked effect on chronic alcohol-induced muscle mechanical hyperalgesia. Our results suggest that administration of probiotics to individuals with AUD may reduce pain associated with alcohol consumption and withdrawal, and may be a novel therapeutic intervention to reduce the high rate of relapse seen in individuals with AUD attempting to abstain from alcohol.
-
T lymphocytes are increasingly implicated in pain signaling. A subset of T lymphocytes, termed TChAT, express the rate-limiting enzyme for acetylcholine (ACh) production, choline acetyltransferase (ChAT), and mediate numerous physiological functions. Given that cholinergic signaling has long been known to modulate pain processing and is the basis for several analgesics used clinically, we asked whether TChAT could be the intersection between T lymphocyte and cholinergic mediation of pain signaling. ⋯ Our experiments demonstrate that cholinergic signaling initiated by T lymphocytes neither dampens nor exacerbates the expression of mechanical or thermal sensitivity in neuropathic mice. Thus, while both cholinergic signaling and T lymphocytes have established roles in modulating pain phenotypes, it is not cholinergic signaling initiated by T lymphocytes that drive this. Our findings will help to narrow in on which aspects of T-cell modulation may prove useful as therapies.
-
The anterior cingulate cortex (ACC) is located in the frontal part of the cingulate cortex, and plays important roles in pain perception and emotion. The thalamocortical pathway is the major sensory input to the ACC. Previous studies have show that several different thalamic nuclei receive projection fibers from spinothalamic tract, that in turn send efferents to the ACC by using neural tracers and optical imaging methods. ⋯ We also combined with a new high-throughput VISoR imaging technique to generate a three-dimensional whole-brain reconstruction, especially the thalamus. We found that cortical neurons in the ACC received direct projections from different sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral, midline, and intralaminar thalamic nuclei. These findings provide key anatomic evidences for the connection between the thalamus and ACC.
-
The transition from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype presents a novel therapeutic strategy for chronic pain. ⋯ P2X7 receptor-mediated spinal microglia polarization is involved in alleviation of CIBP. Therefore, P2X7R is a potential option for CIBP treatment.
-
Pulsed radiofrequency (PRF) therapy is one of the most common treatment options for neuropathic pain, albeit the underlying mechanism has not been hitherto elucidated. In this study, we investigated the efficacy and mechanism of PRF therapy on resiniferatoxin (RTX)-induced mechanical allodynia, which has been used as a model of postherpetic neuralgia (PHN). Adult male rats were intraperitoneally injected with a vehicle or RTX. ⋯ Interestingly, late PRF therapy became effective after daily tramadol administration for 7 days, starting from 2 weeks after RTX exposure. Both early PRF therapy and late PRF therapy combined with early tramadol treatment suppressed NaV1.7 upregulation in the DRG of rats with RTX-induced mechanical allodynia. Therefore, NaV1.7 upregulation in DRG is related to the development of RTX-induced neuropathic pain; moreover, PRF therapy may be effective in the clinical management of patients with PHN via NaV1.7 upregulation inhibition.