Mol Pain
-
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. ⋯ Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.
-
The transition from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype presents a novel therapeutic strategy for chronic pain. ⋯ P2X7 receptor-mediated spinal microglia polarization is involved in alleviation of CIBP. Therefore, P2X7R is a potential option for CIBP treatment.
-
Tumor metastasis to bone is often accompanied by a severe pain syndrome (cancer-induced bone pain, CIBP) that is frequently unresponsive to analgesics, which markedly reduces patient quality of life and cancer treatment tolerance in patients. Prolonged pain can induce hypersensitivity via spinal plasticity, and several recent studies have implicated the involvement of vascular endothelial growth factor-A (VEGF-A) signaling in this process. Here, we speculated that CIBP is associated with VEGF-A/VEGFR2 signaling in the spinal cord. ⋯ Conversely, the intrathecal injection of exogenous VEGF-A was sufficient to cause pain hypersensitivity in naïve mice via the VEGFR2-mediated activation of protein kinase C. Moreover, the spinal blockade of VEGF-A or VEGFR2 also suppressed N-methyl-D-aspartate receptor (NMDAR) activation and downstream Ca2+-dependent signaling. Thus, spinal VEGF-A/VEGFR2/NMDAR signaling pathways may be critical mediators of CIBP.
-
Pulsed radiofrequency (PRF) therapy is one of the most common treatment options for neuropathic pain, albeit the underlying mechanism has not been hitherto elucidated. In this study, we investigated the efficacy and mechanism of PRF therapy on resiniferatoxin (RTX)-induced mechanical allodynia, which has been used as a model of postherpetic neuralgia (PHN). Adult male rats were intraperitoneally injected with a vehicle or RTX. ⋯ Interestingly, late PRF therapy became effective after daily tramadol administration for 7 days, starting from 2 weeks after RTX exposure. Both early PRF therapy and late PRF therapy combined with early tramadol treatment suppressed NaV1.7 upregulation in the DRG of rats with RTX-induced mechanical allodynia. Therefore, NaV1.7 upregulation in DRG is related to the development of RTX-induced neuropathic pain; moreover, PRF therapy may be effective in the clinical management of patients with PHN via NaV1.7 upregulation inhibition.
-
The anterior cingulate cortex (ACC) is a key cortical region that plays an important role in pain perception and emotional functions. Previous studies of the ACC projections have been collected primarily from monkeys, rabbits and rats. Due to technological advances, such as gene manipulation, recent progress has been made in our understanding of the molecular and cellular mechanisms of the ACC-related chronic pain and emotion is mainly obtained from adult mice. ⋯ We found that the ACC projected ipsilaterally primarily to the caudate putamen (CPu), ventral thalamic nucleus, zona incerta (ZI), periaqueductal gray (PAG), superior colliculus (SC), interpolar spinal trigeminal nucleus (Sp5I), and dorsal medullary reticular nucleus (MdD). The ACC also projected to contralateral brain regions, including the ACC, reuniens thalamic nucleus (Re), PAG, Sp5I, and MdD. Our results provide a whole-brain mapping of efferent projections from the ACC in adult male mice, and these findings are critical for future studies of the molecular and synaptic mechanisms of the ACC and its related network in mouse models of brain diseases.