Mol Pain
-
A well-recognized relationship exists between aging and increased susceptibility to chronic pain conditions, underpinning the view that pain signaling pathways differ in aged individuals. Yet despite the higher prevalence of altered pain states among the elderly, the majority of preclinical work studying mechanisms of aberrant sensory processing are conducted in juvenile or young adult animals. This mismatch is especially true for electrophysiological studies where patch clamp recordings from aged tissue are generally viewed as particularly challenging. ⋯ Specifically, aged dorsal horn neurons more readily exhibit repetitive action potential discharge, indicative of a more excitable phenotype. This observation was accompanied by a decrease in the amplitude and charge of spontaneous excitatory synaptic input to dorsal horn neurons and an increase in the contribution of GABAergic signaling to spontaneous inhibitory synaptic input in aged recordings. While the functional significance of these altered circuit properties remains to be determined, future work should seek to assess whether such features may render the aged dorsal horn more susceptible to aberrant injury or disease-induced signaling and contribute to increased pain in the elderly.
-
Chemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN is the major cause of dose reduction or discontinuation of otherwise life-saving treatment. Unfortunately, CIPN can persist in cancer survivors, which adversely affects their quality of life. ⋯ Remarkably, pharmacological blockade and in vivo knockdown of lactate dehydrogenase A or pyruvate dehydrogenase kinase 1 reversed the metabolic phenotype, attenuated calcium responses, and alleviated pain induced by bortezomib. Collectively, these results elucidate the mechanisms by which bortezomib induces aerobic glycolysis. Moreover, these findings establish aerobic glycolysis as a metabolic phenotype that underpins bortezomib-induced CIPN.