Mol Pain
-
Chemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bortezomib, has been shown to induce aerobic glycolysis in sensory neurons. ⋯ Strikingly, the blockade of hypoxia-inducible factor 1 alpha expression does not attenuate mechanical allodynia in mice with existing bortezomib-induced neuropathic pain. These results establish the stabilization of hypoxia-inducible factor 1 alpha expression as the molecular mechanism by which bortezomib initiates chemotherapy-induced painful peripheral neuropathy. Crucially, these findings reveal that the initiation and maintenance of bortezomib-induced neuropathic pain are regulated by distinct mechanisms.
-
Aggressive breast cancer subtypes utilize system xc-, a membrane antiporter, to import cystine for glutathione synthesis and maintenance of redox homeostasis, in turn releasing glutamate as a metabolic pro-nociceptive by-product. Metastatic breast cancers establish themselves at distal sites including bone, where changes in extracellular glutamate levels contribute to cancer-induced bone pain. We previously established that stearically blocking system xc- activity with sulfasalazine delays the onset of nociceptive behaviours and that xCT, the functional antiporter subunit, is positively regulated by signal transducer and activator of transcription 3 (STAT3). ⋯ Treatment with DR-1-55 significantly delayed the onset and severity of spontaneous and induced nociceptive behaviours, also decreasing human SLC7A11 ( xCT) mRNA levels in tumour-bearing limbs without altering osteolysis. In addition, two pro-inflammatory cytokines released by this cell line, interleukin 6 and interleukin 1β, were also down-regulated at the mRNA level in response to DR-1-55 treatment in vivo, with lower human interleukin 6 levels detected in the host circulation. This study demonstrates that targeting pSTAT3 may be a viable therapeutic means to manage cancer-induced bone pain, alone or in combination with stearic system xc- blockers.
-
Sensitivity to different pain modalities has a genetic basis that remains largely unknown. Employing closely related inbred mouse substrains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. ⋯ Using a B6J × B6N-F2 cross (N = 164), we mapped a major quantitative trait locus underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (log of the odds [LOD] = 3.81, p < 0.01; 8.74 Mb-36.50 Mb) that was more pronounced in males. Genes containing expression quantitative trait loci associated with the peak nociceptive marker that are implicated in pain and inflammation include Ryr1, Cyp2a5, Pou2f2, Clip3, Sirt2, Actn4, and Ltbp4 (false discovery rate < 0.05). Future studies involving positional cloning and gene editing will determine the quantitative trait gene(s) and potential pleiotropy of this locus across pain modalities.
-
Memantine is one of the important clinical medications in treating moderate to severe Alzheimer disease. The effect of memantine on preventing or treating punctate allodynia has been thoroughly studied but not on the induction of dynamic allodynia. The aim of this study is to investigate whether memantine could prevent the induction of dynamic allodynia and its underlying spinal mechanisms. ⋯ The selective inhibitory effect on the induction of dynamic allodynia in spared nerve injury model by low dose of the memantine (memantine-10) was tightly correlated with the blockade of microglia Kir2.1 channel to suppress the microglia activation.
-
Degranulation of meningeal mast cells leading to the sensitization of trigeminal vascular afferent processing is believed to be one of the mechanisms underlying the migraine pain pathway. Recent work suggests that Toll-like receptor 4 (TLR4) may be involved in signaling states of central sensitization. Using a murine model of light aversion produced by compound 48/80 (2 mg/kg, intraperitoneal) mast cell degranulation, employed as a surrogate marker for photophobia observed in migraineurs, we examined the role of TLR4 in migraine-like behavior and neuronal activation. ⋯ Assessing the downstream signaling pathway in mutant mice, we found that the TLR4-mediated, light aversion was dependent upon myeloid differentiation primary response gene 88 but not Toll-interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling. In separate groups, male mice sacrificed at 10 min following compound 48/80 revealed a significant increase in the incidence of evoked p-extracellular signal–regulated kinases (+) neurons in the nucleus caudalis of wild type but not Tlr4−/− mice or in mice pre-treated with sumatriptan. This study thus provides the first evidence for involvement of TLR4 signaling through MyD88 in initiating and maintaining migraine-like behavior and nucleus caudalis neuronal activation in the mouse.