Bmc Med
-
Letter
New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis.
Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now been confirmed worldwide. Yet, COVID-19 is strangely and tragically selective. Morbidity and mortality due to COVID19 rise dramatically with age and co-existing health conditions, including cancer and cardiovascular diseases. Human genetic factors may contribute to the extremely high transmissibility of SARS-CoV-2 and to the relentlessly progressive disease observed in a small but significant proportion of infected individuals, but these factors are largely unknown. ⋯ This study suggested that ACE2 or TMPRSS2 DNA polymorphisms were likely associated with genetic susceptibility of COVID-19, which calls for a human genetics initiative for fighting the COVID-19 pandemic.
-
Acute kidney injury (AKI) has become a global health issue. Little is known about the disease burden in Laos. We aimed to evaluate the burden and outcomes of AKI as well as assess the availability of AKI treatment in Laos. ⋯ AKI is a huge burden in Laos with under-recognition and poor outcomes.
-
In this editorial for the collection on complexity in mental health research, we introduce and summarize the inaugural contributions to this collection: a series of theoretical, methodological, and empirical papers that aim to chart a path forward for investigating mental health in all its complexity. A central theme emerges from these contributions: if we are to make genuine progress in explaining, predicting, and treating mental illness, we must study the systems from which psychopathology emerges. As the articles in this collection make clear, the systems that give rise to psychopathology encompass a host of components across biological, psychological, and social levels of analysis, intertwined in a web of complex interactions. ⋯ Yet, this challenge presents a unique opportunity. From physics to ecology, there is a rapidly evolving body of interdisciplinary research dedicated to investigating complex systems. This work provides clear guidance for psychiatric research, opportunities for collaboration, and a set of tools and concepts from which we can draw in our efforts to understand mental health, helping us move toward our ultimate aim of improving the prevention and treatment of psychopathology.
-
A growing body of research highlights the limitations of traditional methods for studying the process of change in psychotherapy. The science of complex systems offers a useful paradigm for studying patterns of psychopathology and the development of more functional patterns in psychotherapy. Some basic principles of change are presented from subdisciplines of complexity science that are particularly relevant to psychotherapy: dynamical systems theory, synergetics, and network theory. Two early warning signs of system transition that have been identified across sciences (critical fluctuations and critical slowing) are also described. The network destabilization and transition (NDT) model of therapeutic change is presented as a conceptual framework to import these principles to psychotherapy research and to suggest future research directions. ⋯ A complex systems approach to psychotherapy research is both viable and necessary to more fully capture the dynamics of human change processes. Research to date suggests that the process of change in psychotherapy can be nonlinear and that periods of increased variability and critical slowing might be early warning signals of transition in psychotherapy, as they are in other systems in nature. Psychotherapy research has been limited by small samples and infrequent assessment, but ambulatory and electronic methods now allow researchers to more fully realize the potential of concepts and methods from complexity science.
-
Randomized Controlled Trial
Hypophosphatemia after high-dose iron repletion with ferric carboxymaltose and ferric derisomaltose-the randomized controlled HOMe aFers study.
In patients with iron deficiency anemia, ferric carboxymaltose (FCM) and ferric derisomaltose (FDI) allow high-dose iron repletion. While FCM is reported to induce hypophosphatemia, the frequency of hypophosphatemia after an equivalent dosage of FDI had not been assessed prospectively. ⋯ While both FCM and FDI provide efficient iron repletion in participants with iron deficiency anemia, FCM induced hypophosphatemia more often than FDI.