Cochrane Db Syst Rev
-
Cochrane Db Syst Rev · Dec 2018
Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma.
Melanoma accounts for a small proportion of all skin cancer cases but is responsible for most skin cancer-related deaths. Early detection and treatment can improve survival. Smartphone applications are readily accessible and potentially offer an instant risk assessment of the likelihood of malignancy so that the right people seek further medical attention from a clinician for more detailed assessment of the lesion. There is, however, a risk that melanomas will be missed and treatment delayed if the application reassures the user that their lesion is low risk. ⋯ Smartphone applications using artificial intelligence-based analysis have not yet demonstrated sufficient promise in terms of accuracy, and they are associated with a high likelihood of missing melanomas. Applications based on store-and-forward images could have a potential role in the timely presentation of people with potentially malignant lesions by facilitating active self-management health practices and early engagement of those with suspicious skin lesions; however, they may incur a significant increase in resource and workload. Given the paucity of evidence and low methodological quality of existing studies, it is not possible to draw any implications for practice. Nevertheless, this is a rapidly advancing field, and new and better applications with robust reporting of studies could change these conclusions substantially.
-
Cochrane Db Syst Rev · Dec 2018
Meta AnalysisComputer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults.
Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and cutaneous squamous cell carcinoma (cSCC) are high-risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Computer-assisted diagnosis (CAD) systems use artificial intelligence to analyse lesion data and arrive at a diagnosis of skin cancer. When used in unreferred settings ('primary care'), CAD may assist general practitioners (GPs) or other clinicians to more appropriately triage high-risk lesions to secondary care. Used alongside clinical and dermoscopic suspicion of malignancy, CAD may reduce unnecessary excisions without missing melanoma cases. ⋯ In highly selected patient populations all CAD types demonstrate high sensitivity, and could prove useful as a back-up for specialist diagnosis to assist in minimising the risk of missing melanomas. However, the evidence base is currently too poor to understand whether CAD system outputs translate to different clinical decision-making in practice. Insufficient data are available on the use of CAD in community settings, or for the detection of keratinocyte cancers. The evidence base for individual systems is too limited to draw conclusions on which might be preferred for practice. Prospective comparative studies are required that evaluate the use of already evaluated CAD systems as diagnostic aids, by comparison to face-to-face dermoscopy, and in participant populations that are representative of those in which the test would be used in practice.
-
Cochrane Db Syst Rev · Dec 2018
Meta AnalysisReflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults.
Early accurate detection of all skin cancer types is important to guide appropriate management and improve morbidity and survival. Basal cell carcinoma (BCC) is usually a localised skin cancer but with potential to infiltrate and damage surrounding tissue, whereas cutaneous squamous cell carcinoma (cSCC) and melanoma are higher risk skin cancers with the potential to metastasise and ultimately lead to death. When used in conjunction with clinical or dermoscopic suspicion of malignancy, or both, reflectance confocal microscopy (RCM) may help to identify cancers eligible for non-surgical treatment without the need for a diagnostic biopsy, particularly in people with suspected BCC. Any potential benefit must be balanced against the risk of any misdiagnoses. ⋯ There is insufficient evidence for the use of RCM for the diagnosis of BCC or cSCC in either population group. A possible role for RCM in clinical practice is as a tool to avoid diagnostic biopsies in lesions with a relatively high clinical suspicion of BCC. The potential for, and consequences of, misclassification of other skin cancers such as melanoma as BCCs requires further research. Importantly, data are lacking that compare RCM to standard clinical practice (with or without dermoscopy).
-
Cochrane Db Syst Rev · Dec 2018
Meta AnalysisOptical coherence tomography for diagnosing skin cancer in adults.
Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers, which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Optical coherence tomography (OCT) is a microscopic imaging technique, which magnifies the surface of a skin lesion using near-infrared light. Used in conjunction with clinical or dermoscopic examination of suspected skin cancer, or both, OCT may offer additional diagnostic information compared to other technologies. ⋯ Insufficient data are available on the use of OCT for the detection of melanoma or cSCC. Initial data suggest conventional OCT may have a role for the diagnosis of BCC in clinically challenging lesions, with our meta-analysis showing a higher sensitivity and higher specificity when compared to visual inspection plus dermoscopy. However, the small number of studies and varying methodological quality means implications to guide practice cannot currently be drawn.Appropriately designed prospective comparative studies are required, given the paucity of data comparing OCT with dermoscopy and other similar diagnostic aids such as reflectance confocal microscopy.
-
Cochrane Db Syst Rev · Dec 2018
Meta AnalysisDermoscopy, with and without visual inspection, for diagnosing melanoma in adults.
Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Although history-taking and visual inspection of a suspicious lesion by a clinician are usually the first in a series of 'tests' to diagnose skin cancer, dermoscopy has become an important tool to assist diagnosis by specialist clinicians and is increasingly used in primary care settings. Dermoscopy is a magnification technique using visible light that allows more detailed examination of the skin compared to examination by the naked eye alone. Establishing the additive value of dermoscopy over and above visual inspection alone across a range of observers and settings is critical to understanding its contribution for the diagnosis of melanoma and to future understanding of the potential role of the growing number of other high-resolution image analysis techniques. ⋯ Despite the observed limitations in the evidence base, dermoscopy is a valuable tool to support the visual inspection of a suspicious skin lesion for the detection of melanoma and atypical intraepidermal melanocytic variants, particularly in referred populations and in the hands of experienced users. Data to support its use in primary care are limited, however, it may assist in triaging suspicious lesions for urgent referral when employed by suitably trained clinicians. Formal algorithms may be of most use for dermoscopy training purposes and for less expert observers, however reliable data comparing approaches using dermoscopy in person are lacking.