Cochrane Db Syst Rev
-
Vitamin D possesses immunomodulatory properties and has been implicated in the pathogenesis and severity of inflammatory bowel disease (IBD). Animal studies and emerging epidemiological evidence have demonstrated an association between vitamin D deficiency and worse disease activity. However, the role of vitamin D for the treatment of IBD is unclear. ⋯ There may be fewer clinical relapses when comparing vitamin D with placebo, but we cannot draw any conclusions on differences in clinical response, quality of life, or withdrawals, due to very low-certainty evidence. When comparing high and low doses of vitamin D, there were no data for clinical response, but there may be no difference in relapse for CD. We cannot draw conclusions on the other outcomes due to very low certainty evidence. Finally, comparing vitamin D (all doses) to supplemental-dose vitamin D, there were no data on clinical relapse or response, and we could not draw conclusions on other outcomes due to very low certainty evidence or missing data. It is difficult to make any clear recommendations for future research on the basis of the findings of this review. Future studies must be clear on the baseline populations, the purpose of vitamin D treatment, and, therefore, study an appropriate dosing strategy. Stakeholders in the field may wish to reach consensus on such issues prior to new studies.
-
Herpes zoster, commonly known as shingles, is a neurocutaneous disease caused by the reactivation of the virus that causes varicella (chickenpox). After resolution of the varicella episode, the virus can remain latent in the sensitive dorsal ganglia of the spine. Years later, with declining immunity, the varicella zoster virus (VZV) can reactivate and cause herpes zoster, an extremely painful condition that can last many weeks or months and significantly compromise the quality of life of the affected person. The natural process of ageing is associated with a reduction in cellular immunity, and this predisposes older adults to herpes zoster. Vaccination with an attenuated form of the VZV activates specific T-cell production avoiding viral reactivation. Two types of herpes zoster vaccines are currently available. One of them is the single-dose live attenuated zoster vaccine (LZV), which contains the same live attenuated virus used in the chickenpox vaccine, but it has over 14-fold more plaque-forming units of the attenuated virus per dose. The other is the recombinant zoster vaccine (RZV) which does not contain the live attenuated virus, but rather a small fraction of the virus that cannot replicate but can boost immunogenicity. The recommended schedule for the RZV is two doses two months apart. This is an update of a Cochrane Review first published in 2010, and updated in 2012, 2016, and 2019. ⋯ We included two new studies involving 1736 participants in this update. The review now includes a total of 26 studies involving 90,259 healthy older adults with a mean age of 63.7 years. Only three studies assessed the cumulative incidence of herpes zoster in groups that received vaccines versus placebo. Most studies were conducted in high-income countries in Europe and North America and included healthy Caucasians (understood to be white participants) aged 60 years or over with no immunosuppressive comorbidities. Two studies were conducted in Japan and one study was conducted in the Republic of Korea. Sixteen studies used LZV. Ten studies tested an RZV. The overall certainty of the evidence was moderate, which indicates that the intervention probably works. Most data for the primary outcome (cumulative incidence of herpes zoster) and secondary outcomes (adverse events and dropouts) came from studies that had a low risk of bias and included a large number of participants. The cumulative incidence of herpes zoster at up to three years of follow-up was lower in participants who received the LZV (one dose subcutaneously) than in those who received placebo (risk ratio (RR) 0.49, 95% confidence interval (CI) 0.43 to 0.56; risk difference (RD) 2%; number needed to treat for an additional beneficial outcome (NNTB) 50; moderate-certainty evidence) in the largest study, which included 38,546 participants. There were no differences between the vaccinated and placebo groups for serious adverse events (RR 1.08, 95% CI 0.95 to 1.21) or deaths (RR 1.01, 95% CI 0.92 to 1.11; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of one or more adverse events (RR 1.71, 95% CI 1.38 to 2.11; RD 23%; number needed to treat for an additional harmful outcome (NNTH) 4.3) and injection site adverse events (RR 3.73, 95% CI 1.93 to 7.21; RD 28%; NNTH 3.6; moderate-certainty evidence) of mild to moderate intensity. These data came from four studies with 6980 participants aged 60 years or older. Two studies (29,311 participants for safety evaluation and 22,022 participants for efficacy evaluation) compared RZV (two doses intramuscularly, two months apart) versus placebo. Participants who received the new vaccine had a lower cumulative incidence of herpes zoster at 3.2 years follow-up (RR 0.08, 95% CI 0.03 to 0.23; RD 3%; NNTB 33; moderate-certainty evidence), probably indicating a favourable profile of the intervention. There were no differences between the vaccinated and placebo groups in cumulative incidence of serious adverse events (RR 0.97, 95% CI 0.91 to 1.03) or deaths (RR 0.94, 95% CI 0.84 to 1.04; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of adverse events, any systemic symptom (RR 2.23, 95% CI 2.12 to 2.34; RD 33%; NNTH 3.0), and any local symptom (RR 6.89, 95% CI 6.37 to 7.45; RD 67%; NNTH 1.5). Although most participants reported that their symptoms were of mild to moderate intensity, the risk of dropouts (participants not returning for the second dose, two months after the first dose) was higher in the vaccine group than in the placebo group (RR 1.25, 95% CI 1.13 to 1.39; RD 1%; NNTH 100, moderate-certainty evidence). Only one study reported funding from a non-commercial source (a university research foundation). All other included studies received funding from pharmaceutical companies. We did not conduct subgroup and sensitivity analyses AUTHORS' CONCLUSIONS: LZV (single dose) and RZV (two doses) are probably effective in preventing shingles disease for at least three years. To date, there are no data to recommend revaccination after receiving the basic schedule for each type of vaccine. Both vaccines produce systemic and injection site adverse events of mild to moderate intensity. The conclusions did not change in relation to the previous version of the systematic review.