Hippokratia
-
The inherited dysfibrinogenemias comprise rare congenital coagulation disorders which are clinically characterized by bleeding diathesis and, in occasional patients, by thrombotic tendency or combined bleeding-thrombotic events. In recent years, accumulating evidence suggested that fibrinogen has a critical role in the pathogenesis of neuroinflammatory disorders, including multiple sclerosis. We describe the presentation and long-term follow-up of a patient with inherited dysfibrinogenemia and concomitant clinical and laboratory evidence of demyelinating disease. Case description: A 16-year-old male patient presented in 2003 with bilateral sensory symptomatology preceded by an episode of epistaxis. His past medical history included episodes of spontaneous nosebleeds as well as Duane syndrome and mild atrophy of the right upper limb. Coagulation testing of the patient and his asymptomatic father revealed in both the presence of a clotting defect, consistent with inherited dysfibrinogenemia (named Fibrinogen Thessaloniki). Within seven months, the patient presented with a new episode of motor semiology whereas serial brain magnetic resonance imaging (MRI) scans revealed T2 lesions with bilateral distribution, some of which with gadolinium enhancement. The cerebrospinal fluid examination disclosed the presence of oligoclonal bands in the central nervous system compartment. The patient was started on azathioprine (2.5 mg/kg/24h) which led to clinical and radiological stabilization for nine years. In 2013, the dose of azathioprine was reduced, due to an elevation of his amylase levels, resulting in radiological deterioration with an increased T2 lesion load. The reinstitution of azathioprine at therapeutic doses led to radiological improvement and clinical stability as of today. ⋯ The described case of inherited dysfibrinogenemia and concomitant multiple sclerosis provides speculative evidence for a causal link, rather than a chance association, between these two entities. Further studies are warranted to corroborate this hypothesis in experimental and clinical settings. HIPPOKRATIA 2017, 21(1): 49-51.
-
The exact causes of skeletal muscle weakness in chronic kidney disease (CKD) remain unknown with uremic toxicity and redox imbalances being implicated. To understand whether uremic muscle has acquired any sensitivity to acute redox changes we examined the effects of redox disturbances on force generation capacity. ⋯ Force generation capacity of CON and UREM fibers is affected by oxidation similarly. However, DTT significantly lowered force in UREM muscle fibers. This may indicate that at baseline UREM muscle could have already been at a more reduced redox state than physiological. This observation warrants further investigation as it could be linked to disease-induced effects. HIPPOKRATIA 2017, 21(1): 3-7.