Int J Med Sci
-
Lipid emulsion has been shown to be an effective treatment for systemic toxicity induced by local anesthetics, which is reflected in case reports. A systemic review and meta-analysis confirm the efficacy of this treatment. Investigators have suggested mechanisms associated with the lipid emulsion-mediated recovery of cardiovascular collapse caused by local anesthetic systemic toxicity; these mechanisms include lipid sink, a widely accepted theory in which highly soluble local anesthetics (particularly bupivacaine) are absorbed into the lipid phase of plasma from tissues (e.g., the heart) affected by local-anesthetic-induced toxicity; enhanced redistribution (lipid shuttle); fatty acid supply; reversal of mitochondrial dysfunction; inotropic effects; glycogen synthase kinase-3β phosphorylation associated with inhibition of the mitochondrial permeability transition pore opening; inhibition of nitric oxide release; and reversal of cardiac sodium channel blockade. The current review includes the following: 1) an introduction, 2) a list of the proposed mechanisms, 3) a discussion of the best lipid emulsion treatment for reversal of local anesthetic toxicity, 4) a description of the effect of epinephrine on lipid emulsion-mediated resuscitation, 5) a description of the recommended lipid emulsion treatment, and 6) a conclusion.
-
Cannabis is becoming increasingly present in our society. In recent years, the line between the natural (cannabis) and the synthetic (synthetic cannabinoids), the recreational (cannabis) and the medical (pharmaceutical cannabinoids and medical cannabis) has been crossed. In this paper we review some of the novel aspects of cannabis and cannabinoids in relation to their legal situation, changes in their composition and forms of cannabis use, the concept of medical cannabis, and synthetic cannabinoids as new psychoactive substances (NPS). We have also analyzed serious adverse reactions and intoxications associated with the use of synthetic cannabinoids, as well as the latest developments in the research of pharmaceutical cannabinoids.
-
Background: Clinical studies have shown that applying pulsed radiofrequency (PRF) to the neural stem could relieve neuropathic pain (NP), albeit through an unclear analgesic mechanism. And animal experiments have indicated that calcitonin gene-related peptide (CGRP) expressed in the dorsal root ganglion (DRG) is involved in generating and maintaining NP. In this case, it is uncertain whether PRF plays an analgesic role by affecting CGRP expression in DRG. ⋯ Meanwhile, the CGRP content of Group D gradually dropped over time, from 76.4 pg/mg (Day 0) to 57.5 pg/mg (Day 14). Conclusions: In this study, we found that, after sciatic nerve ligation, rats exhibited apparent hyperalgesia and allodynia, and CGRP mRNA and CGRP contents in the L4-L6 DRG increased significantly. Through lowering CGRP expression in the DRG, PRF treatment might relieve the pain behaviors of NP.
-
Extracellular matrix metalloproteinase inducer (EMMPRIN) secretion was induced in the oral squamous cell carcinoma cell line HSC3 cell by acid-electrolyzed functional water (FW) stimulation. Augmented EMMPRIN secretion was not under transcriptional control; rather, it was derived from the intracellular storages. EMMPRIN secretion was also induced under oxidative stress and accompanied by the release of lactate dehydrogenase (LDH). ⋯ In contrast, vascular endothelial growth factor expression was reduced. Induction of these factors was abolished following eliminating of EMMPRIN by immunoprecipitation. These results indicate that EMMPRIN might be considered as a type of alarmin that transduces danger signals to the surrounding cells.
-
The highly conserved Hippo signaling pathway is one of the most important pathways involved in tumorigenesis and progress. Previous studies show that YAP, the transcriptional coactivator of Hippo pathway, is expressed highly in many clinical bladder cancer tissues and plays crucial role on bladder cancer progress. To find the YAP-specific target drug and its molecular mechanism in bladder cancer, we apply Verteporfin (VP), a YAP specific inhibitor to function as anti-bladder cancer drug and discover that VP is able to inhibit bladder cancer cell growth and invasion in a dosage dependent manner. ⋯ In further study, we provide evidence that VP is able to inhibit excessive YAP induced bladder cancer cell growth and invasion. To address the repressive function of VP against YAP in bladder cancer, we check the target genes' expression and find VP can dramatically repress YAP overexpression induced Hippo pathway target genes' expression. Taken together, we discover that VP inhibits YAP-induced bladder cancer cell growth and invasion via repressing the target genes' expression of Hippo signaling pathway.