Int J Med Sci
-
Objective: To evaluate the characteristics at admission of patients with moderate COVID-19 in Wuhan and to explore risk factors associated with the severe prognosis of the disease for prognostic prediction. Methods: In this retrospective study, moderate and severe disease was defined according to the report of the WHO-China Joint Mission on COVID-19. Clinical characteristics and laboratory findings of 172 patients with laboratory-confirmed moderate COVID-19 were collected when they were admitted to the Cancer Center of Wuhan Union Hospital between February 13, 2020 and February 25, 2020. ⋯ The six features included interleukin-6, high-sensitivity cardiac troponin I, procalcitonin, high-sensitivity C-reactive protein, chest distress and calcium level. Conclusions: With the data collected at admission, the combination of one clinical characteristic and five laboratory findings contributed the most to the discrimination between the two groups with a linear kernel support vector machine classifier. These factors may be risk factors that can be used to perform a prognostic prediction regarding the severity of the disease for patients with moderate COVID-19 in the early stage of the disease.
-
Chromosome 9 open reading frame 72 (C9ORF72) encodes a 54-kDa protein with unknown function that is expressed at high levels in the central nervous system. The C9ORF72 hexanucleotide amplification is one of the most recently discovered repetitive amplification diseases related to neurodegeneration. Its association with amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) spectrum diseases has been fully established, although a causative role for C9ORF72 in Alzheimer's disease (AD) and Parkinson's disease (PD) remains to be established. Therefore, in this article, we will review the evidence for C9ORF72 as a causative factor in neurodegenerative diseases, the underlying mechanisms, and the potential for targeting C9ORF72 as a strategy to alleviate neurodegenerative disease progression.
-
Review Historical Article
Similarities and differences between HIV and SARS-CoV-2.
In the last 50 years we have experienced two big pandemics, the HIV pandemic and the pandemic caused by SARS-CoV-2. Both pandemics are caused by RNA viruses and have reached us from animals. ⋯ However, they have important similarities: the fear in the population, increase in proinflammatory cytokines that generate intestinal microbiota modifications or NETosis production by polymorphonuclear neutrophils, among others. They have been implicated in the clinical, prognostic and therapeutic attitudes.
-
Background: Protein arginine methyltransferase 4 (PRMT4) has been reported to play a role in several common cancers; however, the function and mechanism of PRMT4 in hepatocellular carcinoma (HCC) are not fully understood. This study aimed to investigate the role and mechanism of PRMT4 in the progression of HCC. Methods: PRMT4 expression and clinicopathological characteristics were investigated using an HCC tissue microarray (TMA) consisting of 140 patient samples analyzed by immunohistochemistry. ⋯ Additional results revealed that PRMT4 promoted the progression of HCC cells via activation of the AKT/mTOR signaling pathway. Furthermore, inhibition of the AKT/mTOR signaling by MK2206 or rapamycin significantly attenuated PRMT4-mediated malignant phenotypes. Conclusions: This study suggests that PRMT4 may promote the progression of HCC cells by activating the AKT/mTOR signaling pathway, which may be a valuable biomarker and potential target for HCC.
-
Observational Study
HRC promotes anoikis resistance and metastasis by suppressing endoplasmic reticulum stress in hepatocellular carcinoma.
Histidine-rich calcium binding protein (HRC) is markedly overexpressed in hepatocellular carcinoma (HCC) and is significantly correlated with metastasis. Anoikis resistance and endoplasmic reticulum (ER) stress may have a critical effect on survival before metastasis. However, the potential functions of HRC in anoikis resistance in HCC remain unknown. ⋯ Mechanistically, the anoikis resistance was probably dependent on endoplasmic reticulum stress. Modulating HRC level changed the ERS to affect anoikis resistance by acting protein kinase RNA-like ER kinase (PERK)-eIF2a-ATF4-CHOP signaling axis. In conclusion, we define HRC as a novel candidate oncogene involved in anoikis resistance and HCC metastasis, and provide a new potential therapeutic target for HCC.