Int J Med Sci
-
Breast cancer remains a worldwide public health issue. LncRNA and autophagy respectively or simultaneously, get involved in cellular and molecular processes of many different cancers, including genesis, metastasis, and deterioration of breast cancer and other malignant tumors. ⋯ Abnormal expression of LncRNA may lead to dysregulation of autophagy, resulting in tumor genesis, expansion, and resistance to anti-tumor therapy. Targeting specific lncRNAs for autophagy regulation may conduct as a bio-marker for reliable diagnosis and prognosis treatment of breast cancer or provide a promising therapeutic strategy.
-
Multicenter Study Observational Study
Determinants for a low dose of alteplase and its relationship to a lower intracerebral bleeding risk in acute ischemic stroke.
Background: Factors for the utilization of intravenous thrombolysis with a low-dose of alteplase (0.6mg/kg) and whether the low-dose of alteplase could reduce the risk of intracerebral bleeding in acute ischemic stroke (AIS) remains uncertain. Aims: We aimed to investigate determinants for the utilization of intravenous thrombolysis with a low-dose of alteplase. We further assessed the association between the low-dose of alteplase and the intracerebral bleeding risk in AIS patients. ⋯ There was no significant difference in the rate of any ICH between two groups (14 [15.9%] vs 18 [20.5%], p = 0.434). Conclusions: Patients with increasing age, a higher baseline systolic blood pressure, and previous ischemic stroke were at a higher odd of receiving a low-dose of alteplase. The low-dose was associated with a lower risk of developing symptomatic intracranial hemorrhage.
-
Observational Study
Single fiber reflectance spectroscopy for pancreatic cancer detection during endoscopic ultrasound guided fine needle biopsy: a prospective cohort study.
This study aimed to determine the ability of single fiber reflectance (SFR) spectroscopy incorporated in endoscopic ultrasound fine needle biopsy (EUS-FNB) procedures in the pancreas to distinguish benign and malignant pancreatic tissue in patient with pancreatic masses suspected for malignancy. Methods: This study was designed as a prospective observational single center study and included consecutive adult patients, who were scheduled for EUS-FNB of a solid pancreatic mass suspected for pancreatic ductal adenocarcinoma (PDAC). In total, seven optical parameters, derived from the absorption acquired spectra, were analyzed: blood volume fraction (BVF), microvascular saturation, average vessel diameter, bilirubin concentration (BIL), Mie amplitude, Mie slope and Rayleigh amplitude. ⋯ The area under the curve of θ was 0.84, resulting in a 92.8%, 75.0%, 97.5%, 50.0% and 91.3% sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for detection of PDAC. Conclusion: Differentiation between PDAC and benign pancreatic tissue using SFR spectroscopy during EUS-FNB procedures is promising. Future work should focus on comparing the diagnostic performance combining SFR spectroscopy with EUS-FNB and EUS-FNB alone.
-
Ferroptosis is a novel kind of regulated cell death distinct from autophagy, apoptosis, and necrosis; it is predominantly caused by the iron-dependent lipid peroxidation. According to studies, numerous conventional signaling pathways and biological processes are implicated in the process of ferroptosis. ⋯ This suggests that ferroptosis is important in ovarian cancer treatment and may be a new target. In this review, we summarize the features of ferroptosis, including its underlying basis and function in ovarian cancer, as well as its potential applications in the treatment of ovarian cancer.
-
Ischemic stroke is one of the leading causes of death and disability. Ischemia triggers a cascade of events leading to cell death and cerebral infarction. Mesenchymal stem cell (MSC) therapy is a promising treatment modality to promote the development of nerve and blood vessels and improve nerve function. ⋯ Modified MSC therapy shows better therapeutic effect under different pathological conditions, and is expected to be translated into clinical practice. In this article, we review the latest advances in the development of modified MSCs for the treatment of cerebral ischemia. In particular, we summarize the targets involved in migration, homing, antioxidant stress, anti-inflammatory, nerve and vascular regeneration, providing new ideas for clinical transformation.