Int J Med Sci
-
Purpose: To early identify abnormal lesions by applying the 18F-FDG PET dynamic modeling approach for discharged patients recovering from COVID-19. Methods: Seven discharged COVID-19 patients (COVID-19 group), twelve healthy volunteers (control group 1), and eight cancer patients with normal pulmonary function (control group 2) were prospectively enrolled. Control group 1 completed static 18F-FDG PET/CT only; COVID-19 group and control group 2 completed 60-min dynamic 18F-FDG PET/CT. ⋯ In contrast, a high 18F-FDG signal of the lung among the COVID-19 group was observed for Ki images. Conclusion: The Ki from 18F-FDG PET/CT dynamic imaging quantification might contribute to identifying residual lesions for COVID-19 survivors. Trial registration: The trial is registered with ClinicalTrials.gov, number NCT04519255 (IRB-approved number, K52-1).
-
Introduction: Early detection of lung cancer is one way to improve outcomes. Improving the detection of nodules on chest CT scans is important. Previous artificial intelligence (AI) modules show rapid advantages, which improves the performance of detecting lung nodules in some datasets. ⋯ Conclusions: Detection of lung nodules is important for lung cancer treatment. When facing a large number of CT scans, error-prone nodules are a great challenge for doctors. The AI-assisted program improved the performance of detecting lung nodules, especially for error-prone nodules.
-
Background: Mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may reduce the efficacy of neutralizing monoclonal antibody therapy against coronavirus disease 2019 (COVID-19). We here evaluated the efficacy of casirivimab-imdevimab in patients with mild-to-moderate COVID-19 during the Delta variant surge in Fukushima Prefecture, Japan. Methods: We enrolled 949 patients with mild-to-moderate COVID-19 who were admitted to hospital between July 24, 2021 and September 30, 2021. ⋯ Multivariate logistic regression analysis demonstrated that receiving casirivimab-imdevimab was an independent factor for preventing deterioration (odds ratio 0.448; 95% confidence interval 0.263-0.763; P = 0.0023). Furthermore, in 222 patients who were selected from each group after matching on the propensity score, deterioration was significantly lower among those receiving casirivimab-imdevimab compared to those not receiving casirivimab-imdevimab (7.66% vs 14.0%; p = 0.021). Conclusion: This real-world study demonstrates that casirivimab-imdevimab contributes to the prevention of deterioration in COVID-19 patients after hospitalization during a Delta variant surge.
-
Background: Patients with amyloid light-chain (AL) amyloidosis with a bone marrow plasma cell ratio > 10% (AL-PCMM) have a poorer prognosis than patients with AL amyloidosis with a bone marrow plasma cell ratio of <10% (AL-only), similar to that of patients with AL amyloidosis and multiple myeloma (AL-MM). However, the prognostic factors for AL-PCMM and AL-MM have not been studied. Methods: A total of 49 patients with AL-PCMM or AL-MM in the Peking University First Hospital registry in 2010-2018 were enrolled. ⋯ Cox regression analyses revealed that BU staging system stage ≥ III (P=0.001, hazard ratio [HR]=5.579), ALP ≥ 187.5 IU/L (P=0.011, HR=3.563), and ITE < VGPR (P=0.002, HR=7.462) were independent significant risk factors for a poor prognosis of AL-PCMM and AL-MM. Conclusion: ALP level, which is related to cardiac amyloidosis rather than liver involvement, can be a prognostic factor for this group of patients. A BU staging system stage ≥ III, ALP ≥ 187.5 IU/L, and ITE < VGPR were independent significant risk factors for a poor prognosis of AL-PCMM and AL-MM.
-
Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. ⋯ This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.