J Formos Med Assoc
-
The purpose of this study is to establish a deep learning automatic assistance diagnosis system for benign and malignant classification of mediastinal lesions in endobronchial ultrasound (EBUS) images. EBUS images are in the form of video and contain multiple imaging modes. Different imaging modes and different frames can reflect the different characteristics of lesions. ⋯ The results show that TransEBUS achieved a diagnostic accuracy of 82% and an area under the curve of 0.8812 in the test dataset, outperforming other methods. It also shows that several models can improve performance by incorporating two-stream module. Our proposed system has shown its potential to help physicians distinguishing benign and malignant mediastinal lesions, thereby ensuring the accuracy of EBUS examination.