Presse Med
-
Radioiodine uptake (RAIU) test with iodine-123 (Na[123I]I) or iodine-131 (Na[131I]I) enables accurate evaluation and quantification of iodine uptake and kinetics within thyroid cells. Thyroid Scintigraphy (TS) employing Na[123I]I or 99mTc-pertechnetate (Na[99mTc]TcO4) provides information regarding the function and topographical distribution of thyroid cells activity, including detection and localization of ectopic thyroid tissue. Destructive thyrotoxicosis is characterized by low RAIU with scintigraphically reduced radiotracer activity in the thyroid tissue, while productive thyrotoxicosis (i.e. hyperthyroidism "stricto sensu") is characterized by high RAIU with scintigraphically diffuse (i.e. ⋯ Finally, RAIU studies are also useful for calculating the administered therapeutic activity of Na[131I]I to treat hyperthyroidism and euthyroid multinodular goiter. All considered, thyroid molecular imaging allows functional characterization of different thyroid diseases, even before clinical symptoms become manifest, and remains integral to the management of such conditions. Our present paper summarizes basic concepts, clinical applications, and potential developments of thyroid molecular imaging in patients affected by thyrotoxicosis and thyroid nodules.
-
Diagnosis and monitoring of neurodegenerative diseases has changed profoundly over the past twenty years. Biomarkers are now included in most diagnostic procedures as well as in clinical trials. ⋯ MRI mainly explores brain structure while molecular imaging, functional MRI and electro- and magnetoencephalography examine brain function. In this paper, we describe and analyse the current and potential contribution of MRI and molecular imaging in the field of neurodegenerative diseases.
-
During the last 20 years, cardiac imaging has drastically evolved. Positron emission tomography (PET), fast three-dimensional (3D) imaging with the latest generations of echocardiography & multi-detector computed tomography (CT), stress perfusion assessed by magnetic resonance imaging (MRI), blood flow analysis using four-dimensional (4D) flow MRI, all these techniques offer new trends for optimal noninvasive functional cardiac imaging. Dynamic functional imaging is obtained by acquiring images of the heart at different phases of the cardiac cycle, allowing assessment of cardiac motion, function, and perfusion. Between CT and Cardiac MRI (CMR), CMR has the best temporal resolution, which is suitable for functional imaging while cardiac CT provides higher spatial resolution with isotropic data that have an identical resolution in the three dimensions of the space. ⋯ It still is the first line and more accessible exam for the patient. These different modalities are complementary and may be even combined into PET-CT or PET-MRI. The ability to combine the functional/molecular data with anatomical images may implement a new dimension to our diagnostic tools.
-
Functional imaging plays a central role in the management of thyroid cancer patients. In patients with a differentiated thyroid cancer (DTC), radioactive iodine (RAI) is used mostly with a therapeutic intent, either post-operatively or as the first line systemic treatment in patients with known structural disease. ⋯ A dosimetric approach with 124I PET/CT showed encouraging results. Several functional imaging modalities are currently available for medullary thyroid carcinoma (MTC) patients. 18F-FDG-PET/CT may be sensitive in MTC patients with high FDG uptake that signals aggressive disease. 18F-DOPA is the most sensitive imaging technique to visualize small tumor foci, and is also highly specific in patients with a known MTC, but should be complemented by a CT scan of the chest and by a MRI of the liver to detect small metastases.
-
Over the past twenty years, nuclear medicine has enhanced the role of functional imaging in cancerology. A major milestone was achieved in the early 2000s with widespread availability of the positron emitter tracer 18F- deoxyglucose (FDG) and the introduction of hybrid imagers, i.e. positron imagers coupled with an X CT, providing anatomical landmarks and potently contributing to attenuation and scatter correction of the images. ⋯ Other highly specific tracers have been developed and are now routinely used for pheochromocytoma and paraganglioma, neuroendocrine tumors, and prostate cancer. Biological Radiotherapy has two aspects: Internal radiotherapy consisting in administration of a tumor-specific molecule radiolabeled with an isotope delivering an adequate radiation dose to the targeted tumor sites (on the model of thyroid cancer treated with radioiodine) and external radiotherapy designed to determine tumor volume, assess response and to dose radiation according to the tumor characteristics shown by functional imaging.