Bmc Nephrol
-
Case Reports
A missed opportunity - consequences of unknown levetiracepam pharmacokinetics in a peritoneal dialysis patient.
Levetiracetam is a frequently used drug in the therapy of partial onset, myoclonic and generalized tonic-clonic seizures. The main route of elimination is via the kidneys, which eliminate 66% of the unchanged drug as well as 24% as inactive metabolite that stems from enzymatic hydrolysis. Therefore dose adjustments are needed in patients with chronic kidney disease stage 5 D, i.e. patients undergoing dialysis treatment. In this patient population a dose reduction by 50% is recommended, so that patients receive 250-750 mg every 12 hours. However "dialysis" can be performed in using different modalities and treatment intensities. For most of the drugs pharmacokinetic data and dosing recommendations for patients undergoing peritoneal dialysis are not available. This is the first report on levetiracetam pharmacokinetics in a peritoneal dialysis patient. ⋯ If levetiracetam is used in peritoneal dialysis patients it should be regularly monitored to avoid supratherapeutic levels that could lead to severe sequelae.
-
Diabetes mellitus is the leading cause of end-stage renal disease (ESRD) globally. Diabetes and human immunodeficiency virus (HIV), both prevalent in South Africa, have not been reported as significant causes of ESRD. ⋯ Diabetes and HIV are prevalent in CKD patients at primary/regional level healthcare in South Africa. With registry data lacking, dedicated CKD clinics at lower healthcare levels may provide valuable data on CKD epidemiology including changes in aetiology. Primary healthcare practitioners are faced with advanced CKD patients in resource-poor settings, with limited opportunity for upward referral hence the need for nephrology outreach programs.
-
Clinical Trial
Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease.
Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment. ⋯ Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency.
-
Haemolytic-uremic syndrome (HUS) is a severe, life-threatening disease with symptoms such as haemolytic anaemia, renal failure, and a low platelet count. Possible aetiology includes bacterial infections, medication, post-hematopoietic cell transplantation, pregnancy, autoimmune disease, and acquired immunodeficiency syndrome. ⋯ This is the first case illustrating a serious systemic reaction of HUS to fire ant bites, and highlights this severe complication in patients who sustain fire ant bites.
-
Intratracheal aspiration and sepsis are leading causes of acute lung injury that frequently necessitate mechanical ventilation (MV), which may aggravate lung injury thereby potentially increasing the risk of acute kidney injury (AKI). We compared the effects of ventilation strategies and underlying conditions on the development of AKI. ⋯ AKI is more likely to develop after MV induced lung injury during an indirect (as in sepsis) than after a direct (as after intra-tracheal instillation) insult to the lungs, since it induces kidney apoptosis during sepsis but not after acid instillation, opposite to the lung injury it caused. Our findings thus suggest using protective ventilatory strategies in human sepsis, even in the absence of overt lung injury, to protect the kidney.