Respiratory care
-
Editorial Randomized Controlled Trial Multicenter Study
THE ASSOCIATION BETWEEN PHYSIOLOGIC DEAD-SPACE FRACTION AND MORTALITY IN PATIENTS WITH THE ACUTE RESPIRATORY DISTRESS SYNDROME ENROLLED INTO A PROSPECTIVE MULTI-CENTERED CLINICAL TRIAL.
We tested the association between pulmonary dead-space fraction (ratio of dead space to tidal volume [V(D)/V(T)]) and mortality in subjects with ARDS (Berlin definition, P(aO2)/F(IO2) ≤ 300 mm Hg; PEEP ≥ 5 cm H2O) enrolled into a clinical trial incorporating lung-protective ventilation. ⋯ Markedly elevated V(D)/V(T) (≥ 0.60) in early ARDS is associated with higher mortality. Measuring V(D)/V(T) may be useful in identifying ARDS patients at increased risk of death who are enrolled into a therapeutic trial.
-
Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. ⋯ Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation.
-
Randomized Controlled Trial
Clinical Use of the Volume-Time Curve for Endotracheal Tube Cuff Management.
Previous investigation showed that the volume-time curve technique could be an alternative for endotracheal tube (ETT) cuff management. However, the clinical impact of the volume-time curve application has not been documented. The purpose of this study was to compare the occurrence and intensity of a sore throat, cough, thoracic pain, and pulmonary function between these 2 techniques for ETT cuff management: volume-time curve technique versus minimal occlusive volume (MOV) technique after coronary artery bypass grafting. ⋯ The subjects who received the volume-time curve technique for ETT cuff management presented a significantly lower incidence and severity of sore throat and cough, less thoracic pain, and minimally impaired pulmonary function than those subjects who received the MOV technique during the first 24 h after coronary artery bypass grafting.
-
The American Association for Respiratory Care has declared a benchmark for competency in mechanical ventilation that includes the ability to "apply to practice all ventilation modes currently available on all invasive and noninvasive mechanical ventilators." This level of competency presupposes the ability to identify, classify, compare, and contrast all modes of ventilation. Unfortunately, current educational paradigms do not supply the tools to achieve such goals. To fill this gap, we expand and refine a previously described taxonomy for classifying modes of ventilation and explain how it can be understood in terms of 10 fundamental constructs of ventilator technology: (1) defining a breath, (2) defining an assisted breath, (3) specifying the means of assisting breaths based on control variables specified by the equation of motion, (4) classifying breaths in terms of how inspiration is started and stopped, (5) identifying ventilator-initiated versus patient-initiated start and stop events, (6) defining spontaneous and mandatory breaths, (7) defining breath sequences (8), combining control variables and breath sequences into ventilatory patterns, (9) describing targeting schemes, and (10) constructing a formal taxonomy for modes of ventilation composed of control variable, breath sequence, and targeting schemes. Having established the theoretical basis of the taxonomy, we demonstrate a step-by-step procedure to classify any mode on any mechanical ventilator.