Respiratory care
-
The development and evolution of the endotracheal tube (ETT) have been closely related to advances in surgery and anesthesia. Modifications were made to accomplish many tasks, including minimizing gross aspiration, isolating a lung, providing a clear facial surgical field during general anesthesia, monitoring laryngeal nerve damage during surgery, preventing airway fires during laser surgery, and administering medications. In critical care management, ventilator-associated pneumonia (VAP) is a major concern, as it is associated with increased morbidity, mortality, and cost. ⋯ Modifications to the ETT that attempt to prevent bacteria from entering around the ETT include maintaining an adequate cuff pressure against the tracheal wall, changing the material and shape of the cuff, and aspirating the secretions that sit above the cuff. Attempts to reduce bacterial entry through the tube include antimicrobial coating of the ETT and mechanically scraping the biofilm from within the ETT. Studies evaluating the effectiveness of these modifications and techniques demonstrate mixed results, and clear recommendations for which modification should be implemented are weak.
-
Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. ⋯ Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.