Respiratory care
-
The estimation of pleural pressure with esophageal manometry has been used for decades, and it has been a fertile area of physiology research in healthy subject as well as during mechanical ventilation in patients with lung injury. However, its scarce adoption in clinical practice takes its roots from the (false) ideas that it requires expertise with years of training, that the values obtained are not reliable due to technical challenges or discrepant methods of calculation, and that measurement of esophageal pressure has not proved to benefit patient outcomes. Despites these criticisms, esophageal manometry could contribute to better monitoring, optimization, and personalization of mechanical ventilation from the acute initial phase to the weaning period. This review aims to provide a comprehensive but comprehensible guide addressing the technical aspects of esophageal catheter use, its application in different clinical situations and conditions, and an update on the state of the art with recent studies on this topic and on remaining questions and ways for improvement.
-
The electronic health record allows the assimilation of large amounts of clinical and laboratory data. Big data describes the analysis of large data sets using computational modeling to reveal patterns, trends, and associations. ⋯ First, a general overview is provided for the layperson and introduces key concepts, definitions, best practices, and things to watch out for when reading a paper that incorporates machine learning. Second, recent publications at the intersection of big data, machine learning, and mechanical ventilation are presented.
-
Mechanical ventilation is an indispensable form of life support for patients undergoing general anesthesia or experiencing respiratory failure in the setting of critical illness. These patients are at risk for a number of complications related to both their underlying disease states and the mechanical ventilation itself. Intensive monitoring is required to identify early signs of clinical worsening and to minimize the risk of iatrogenic harm. ⋯ Assessments of driving pressure, transpulmonary pressure, and the pressure-volume loop are performed to ensure that adequate PEEP is applied and excess distending pressure is minimized. Finally, monitoring and frequent adjustment of airway cuff pressures is performed to minimize the risk of airway injury and ventilator-associated pneumonia. We will discuss monitoring during mechanical ventilation with a focus on the accuracy, ease of use, and effectiveness in preventing harm for each of these monitoring modalities.
-
Lung volume measurement performed during invasive mechanical ventilation can be used to determine functional residual capacity, changes in end-expiratory lung volume with the application of PEEP, and lung strain. However, many bedside measurements provide useful information without the use of specialized equipment. ⋯ This review will describe techniques to measure lung volumes in the ICU and the relationship between lung strain, stress, and other measurements. This review will also discuss monitoring ventilation distribution at the bedside and the clinical assessment of regional compliance that this technology provides.
-
Ventilator graphic monitoring is common in ICUs. The graphic information provides clinicians with immediate clues regarding patient-ventilator interaction and ventilator function. These display tools are aimed at reducing complications associated with mechanical ventilation, such as patient-ventilator asynchrony. ⋯ Ventilator graphics impact mechanical ventilation management through optimizing effectiveness of patient care and enhancing promptness of clinician response. Despite being a valuable asset in providing high-quality patient care, many bedside clinicians do not have a thorough understanding of ventilator graphics. Mastery of ventilator graphics interpretation is key in managing patients who are receiving ventilatory support.