BMC anesthesiology
-
Randomized Controlled Trial
Lidocaine coinfusion alleviates vascular pain induced by hypertonic saline infusion: a randomized, placebo-controlled trial.
Hypertonic saline solution has been frequently utilized in clinical practice. However, due to the nonphysiological osmolality, hypertonic saline infusion usually induces local vascular pain. We conducted this study to evaluate the effect of lidocaine coinfusion for alleviating vascular pain induced by hypertonic saline. ⋯ Lidocaine coinfusion could effectively alleviate vascular pain induced by hypertonic saline infusion.
-
Blood transfusion can cause immunosuppression and lead to worse outcomes in patients with digestive tract malignancies; however, the specific mechanism behind this is not completely understood. One theory is that increased numbers of regulatory CD3+CD4+CD25+FOXP3+ T cells (Tregs) and forkhead box protein-3 mRNA (FOXP3) expression in the blood after transfusion contribute to these outcomes. The effect of blood transfusion on immune function in patients with different ABO blood types is variable. This study investigates the effect of intraoperative blood transfusion on the number of Tregs and the expression of FOXP3 in the blood of patients with different ABO blood types and digestive tract malignancies. ⋯ Intraoperative blood transfusion can lead to an increase in blood Tregs and FOXP3 expression in patients with digestive tract malignancies. Increases were greatest on the first day after surgery and differed among patients with different blood types. Increases were greatest in blood type B and least in blood type A.
-
Observational Study
Electroencephalographic dynamics of etomidate-induced loss of consciousness.
Highly structured electroencephalography (EEG) oscillations can occur in adults during etomidate-induced general anesthesia, but the link between these two phenomena is poorly understood. Therefore, in the present study, we investigated the electroencephalogram dynamics of etomidate-induced loss of consciousness (LOC) in order to understand the neurological mechanism of etomidate-induced LOC. ⋯ The neural circuit mechanism of etomidate-induced LOC is closely related to the induction of oscillation in delta, theta, alpha and beta waves and the enhancement of delta-wave coherence.
-
Bronchoscopy treatments of central airway obstruction (CAO) under general anesthesia are high-risky procedures, and posing a giant challenge to the anesthesiologists. We summarized and analyzed our clinical experience in patients with CAO undergoing flexible or rigid bronchoscopy, to estimate the safety of skeletal muscle relaxants application and the traditional Low-frequency ventilation. ⋯ The muscle relaxants and low-frequency traditional ventilation can be safely used both in flexible and rigid bronchoscopy treatments in patients with CAO. These results may provide strong clinical evidence for optimizing the anesthesia management of bronchoscopy for these patients.
-
Intraoperative brain function monitoring with processed electroencephalogram (EEG) indices, such as the bispectral index (BIS) and patient state index (PSI), may improve characterization of the depth of sedation or anesthesia when compared to conventional physiologic monitors, such as heart rate and blood pressure. However, the clinical assessment of anesthetic depth may not always agree with available processed EEG indices. To concurrently compare the performance of BIS and SedLine monitors, we present a data collection system using shared individual generic sensors connected to a custom-built passive interface box. ⋯ Prior studies comparing brain function monitoring devices have applied both sensors on the forehead of study subjects simultaneously. With limited space and common sensor locations between devices, it is not possible to place both commercial sensor arrays according to the manufacturer's recommendations, thus compromising the validity of these comparisons. This trial utilizes a custom interface allowing signals from sensors to be shared between BIS and SedLine monitors to provide an accurate comparison. Our results will also characterize the degree of agreement between processed EEG indices and clinical assessments of anesthetic depth as determined by the anesthesiologists' interpretations of acute changes in blood pressure and heart rate as well as the administration, or change to the continuous delivery, of medications at these timepoints. Patient factors (such as burst suppression state or low power EEG conditions from aging brain), surgical conditions (such as use of electrocautery), artifacts (such as electromyography), and anesthesia medications and doses (such as end-tidal concentration of volatile anesthetic or hypnotic infusion dose) that lead to lack of agreement will be explored as well.