BMC anesthesiology
-
Low-flow sevoflurane anesthesia has been shown to influence renal function in rats, but not in adult humans. Presently, no study has assessed the effects of sevoflurane on renal function in low birth weight infants. Our aim was to study the renal function in low birth weight infants undergoing surgery with low-flow sevoflurane anesthesia. ⋯ Low-flow sevoflurane semi-closed inhalation anesthesia has no significant effect on the renal function of low birth weight infants.
-
It remains to be elucidated whether the Trendelenburg position increases intracranial pressure (ICP). ICP can be evaluated by measuring the sonographic optic nerve sheath diameter (ONSD). We investigated the effect of the isolated Trendelenburg position on ONSD in patients undergoing robot-assisted laparoscopic radical prostatectomy. Additionally, we evaluated the effect of the Trendelenburg position combined with pneumoperitoneum on ONSD. ⋯ Use of the isolated steep Trendelenburg position, for even a short duration, increased the sonographic ONSD, providing a better understanding of the effect of only a transient steep Trendelenburg position on ONSD as a surrogate measure for ICP.
-
Epinephrine is a first-line drug for cardiopulmonary resuscitation, but its efficacy in the treatment of bupivacaine-induced cardiac toxicity is still in question. We hypothesized that epinephrine can reverse cardiac inhibition of bupivacaine by modulating ion flows through the ventricular myocyte membrane channels of rats. The aim of this study was to observe and report the effects of epinephrine on high-concentration bupivacaine-induced inhibition of sodium (INa), L-type calcium (ICa-L), and transient outward potassium (Ito) currents in the ventricular myocytes of rats. ⋯ Epinephrine can reverse high-concentration bupivacaine induced inhibition of ICa-L and Ito, but not INa. Thus, epinephrine's effectiveness in reversal of bupivacaine-induced cardiac toxicity secondary to sodium channel inhibition may be limited.
-
An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. ⋯ An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).
-
Different anesthesia regimes are commonly used in experimental models of cardiac arrest, but the effects of various anesthetics on clinical outcome parameters are unknown. We conducted a study in which we subjected rats to cardiac arrest under medetomidine/ketamine or sevoflurane/fentanyl anesthesia. ⋯ In our cardiac arrest model neurological function was not influenced by different anesthetic regimes; in contrast, anesthesia with sevoflurane/fentanyl results in increased CSF inflammation and histologic damage at day 5 post cardiac arrest.