Anesthesia progress
-
Anesthesia progress · Jan 2012
Comparative StudyDemand in pediatric dentistry for sedation and general anesthesia by dentist anesthesiologists: a survey of directors of dentist anesthesiologist and pediatric dentistry residencies.
This study describes what training programs in pediatric dentistry and dental anesthesiology are doing to meet future needs for deep sedation/general anesthesia services required for pediatric dentistry. Residency directors from 10 dental anesthesiology training programs in North America and 79 directors from pediatric dentistry training programs in North America were asked to answer an 18-item and 22-item online survey, respectively, through an online survey tool. The response rate for the 10 anesthesiology training program directors was 9 of 10 or 90%. ⋯ Pediatric dentistry residency directors perceive a future change in the need for deep sedation/general anesthesia services provided by dentist anesthesiologists to pediatric dentists: 64% anticipate an increase in need for dentist anesthesiologist services, while 36% anticipate no change. Dental anesthesiology directors compared to 2, 5, and 10 years ago have seen an increase in the requests for dentist anesthesiologist services by pediatric dentists reported by 56% of respondents (past 2 years), 63% of respondents (past 5 years), and 88% of respondents (past 10 years), respectively. Predicting the future need of dentist anesthesiologists is an uncertain task, but these results show pediatric dentistry directors and dental anesthesiology directors are considering the need, and they recognize a trend of increased need for dentist anesthesiologist services over the past decade.
-
Anesthesia progress · Jan 2012
Anesthetic considerations for masticatory muscle tendon-aponeurosis hyperplasia: a report of 24 cases.
Masticatory muscle tendon-aponeurosis hyperplasia (MMTAH) is a new disease entity characterized by limited mouth opening due to contracture of the masticatory muscles, resulting from hyperplasia of tendons and aponeuroses. In this case series, we report what methods of airway establishment were conclusively chosen after rapid induction of anesthesia. We had 24 consecutive patients with MMTAH who underwent surgical release of its contracture under general anesthesia. ⋯ In the remaining 10 cases, fiber-optic intubation was used. Limited mouth opening in patients with MMTAH did not improve with muscular relaxation. "Square mandible" has been reported to be one of the clinical features in this disease; however, half of these 24 patients lacked this characteristic, which might affect a definitive diagnosis of this disease for anesthesiologists. An airway problem in patients with MMTAH should not be underestimated, which means that other intubation methods rather than direct laryngoscopy had better be considered.
-
Anesthesia progress · Jan 2012
Comparative StudyThe use of office-based sedation and general anesthesia by board certified pediatric dentists practicing in the United States.
The purpose of this study is to explore the use of office-based sedation by board-certified pediatric dentists practicing in the United States. Pediatric dentists have traditionally relied upon self-administered sedation techniques to provide office-based sedation. The use of dentist anesthesiologists to provide office-based sedation is an emerging trend. ⋯ Of the 1917 surveys e-mailed, 494 completed the survey for a response rate of 26%. Over 70% of board-certified US pediatric dentists use some form of sedation in their offices. Less than 20% administer IV sedation, 20 to 40% use a dentist anesthesiologist, and 60 to 70% would use dentist anesthesiologists if one were available.
-
Anesthesia progress · Jan 2011
Randomized Controlled TrialAnesthetic efficacy of combinations of 0.5 m mannitol and lidocaine with epinephrine in inferior alveolar nerve blocks: a prospective randomized, single-blind study.
The purpose of this prospective, randomized, single-blind study was to determine the anesthetic efficacy of lidocaine with epinephrine compared to lidocaine with epinephrine plus 0.5 M mannitol in inferior alveolar nerve (IAN) blocks. Forty subjects randomly received an IAN block in 3 separate appointments spaced at least 1 week apart using the following formulations: a 1.8 mL solution of 36 mg lidocaine with 18 µg epinephrine (control solution); a 2.84 mL solution of 36 mg lidocaine with 18 µg epinephrine (1.80 mL) plus 0.5 M mannitol (1.04 mL); and a 5 mL solution of 63.6 mg lidocaine with 32 µg epinephrine (3.18 mL) plus 0.5 M mannitol (1.82 mL). Mandibular teeth were blindly electric pulp tested at 4-minute cycles for 60 minutes postinjection. ⋯ The 5 mL of lidocaine with epinephrine plus 0.5 M mannitol was statistically better than 1.8 mL of lidocaine with epinephrine and 2.84 mL of lidocaine with epinephrine plus 0.5 M mannitol for all teeth except the central incisor. Solution deposition pain and postoperative pain were not statistically different among the mannitol formulations and the lidocaine formulation without mannitol. We concluded that adding 0.5 M mannitol to lidocaine with epinephrine formulations significantly improved effectiveness in achieving a greater percentage of total pulpal anesthesia compared with a lidocaine formulation without mannitol for IAN block.
-
Anesthesia progress · Jan 2011
Case ReportsTransient cardiac arrest in patient with left ventricular noncompaction (spongiform cardiomyopathy).
Left ventricular noncompaction (LVNC), also known as spongiform cardiomyopathy, is a severe disease that has not previously been discussed with respect to general anesthesia. We treated a child with LVNC who experienced cardiac arrest. Dental treatment under general anesthesia was scheduled because the patient had a risk of endocarditis due to dental caries along with a history of being uncooperative for dental care. ⋯ Thereafter, an opioid-based anesthetic was performed, and recovery was smooth. In LVNC, opioid-based anesthesia is suggested to avoid the significant cardiac suppression seen with a volatile anesthetic, once intravenous access is established. Additionally, all operating room staff should master Advanced Cardiac Life Support/Pediatric Advanced Life Support (including intraosseous access), and more than 1 anesthesiologist should be present to induce general anesthesia, if possible, for this high-risk patient.