Translational stroke research
-
Despite more than 30 years of clinical use, questions remain about the safety of xenon gas in Xenon-CT cerebral blood flow (XeCTCBF) studies. In particular, xenon's effect on brain oxygen (PbtO2) in comatose patients is not well defined. Our objective was to assess the effect of a 4.5-min inhalation of 28 % stable xenon on several physiologic variables, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and PbtO2 in comatose patients (Glasgow Coma Scale [GCS] ≤ 8). ⋯ There was a varied response to xenon in most measured variables. Clinically significant changes in each were infrequent, and readily reversed with the cessation of the gas. We conclude that xenon does not appear to have a clinically significant effect on ICP, CPP, and PbtO2 and so appears safe to evaluate cerebral blood flow in comatose patients.
-
Emerging evidence suggests sex and apolipoprotein E (APOE) genotype separately modify outcomes after intracerebral hemorrhage (ICH). We test the hypothesis that an interaction exists between sex and APOE polymorphism in modifying outcomes after ICH and is altered by administration of exogenous apoE-mimetic peptide. To define the effects of sex and APOE polymorphism in ICH, we created collagenase-induced ICH in male and female APOETR mice (targeted replacement mice homozygous for APOE3 or APOE4 alleles; n=12/group) and assessed performance on Rotarod (RR) and Morris water maze (MWM). ⋯ Administration of a therapeutic apoE-mimetic peptide improved RR latencies through 7 days after ICH in male and female APOE4TR mice and MWM latencies over days 28-32 after ICH in male APOE4TR mice (p<0.05). Sex and APOE polymorphism influence functional outcomes in our murine model of ICH. Moreover, administration of exogenous apoE-mimetic peptide after injury differentially modifies the interaction between sex and APOE polymorphism.
-
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. ⋯ The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
-
There is growing evidence supporting the role of inflammation in early brain injury and cerebral vasospasm following subarachnoid hemorrhage (SAH). Matrix metalloproteinases (MMPs) are released by inflammatory cells and can mediate early brain injury via disruption of the extracellular matrix and mediate vasospasm by cleaving endothelin-1 into vasoactive fragments. We hypothesize that inflammation marked by neutrophil elevation and MMP-9 release in human SAH is associated with vasospasm and with poor clinical outcome. ⋯ Blood and CSF MMP-9 are associated with clinical outcome but not with vasospasm, suggesting that MMP-9 may mediate brain injury independent of vasospasm in SAH. Future in vitro studies are needed to investigate the role of MMP-9 in SAH-related brain injury. Larger clinical studies are needed to validate blood and CSF MMP-9 as potential biomarkers for SAH outcome.
-
Stroke is the second leading cause of death worldwide and the third leading cause of death in the USA. A clinically useful biomarker for the diagnosis of stroke does not currently exist. Biomarkers could improve stroke care by allowing early diagnosis by non-expert clinical providers, serial monitoring of patients, and rapid assessment of severity of brain injury. ⋯ This will include the utility of neuroproteomics/neurosystems biology analysis as a novel discipline leading to the identification of novel biomarkers that can reach the pipeline of bench side. Additionally, an outline of biomarker-based management of traumatic brain injury and stroke patient assessments of therapeutic interventions has been included. Finally, comparison of current biomarker occurrence between preclinical models and biomarker data from human clinical studies for stroke has been summarized.