Acta neurochirurgica. Supplement
-
The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. ⋯ Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.
-
Acta Neurochir. Suppl. · Jan 2018
What Determines Outcome in Patients That Suffer Raised Intracranial Pressure After Traumatic Brain Injury?
Episodes of raised intracranial pressure (ICP) after traumatic brain injury (TBI) are responsible for the majority of secondary brain injury events and thereby strongly affect long-term outcome. However, not all patients with major episodes of raised ICP suffer a poor outcome. The aim of the current analysis was to identify variables contributing to good outcome in patients suffering episodes of high ICP. ⋯ Prolonged episodes of disturbed dynamic cerebral autoregulation contribute to detrimental outcome in patients with increased ICP. Autoregulation seems to have an important protective role in tolerating episodes of raised ICP.
-
Acta Neurochir. Suppl. · Jan 2018
Comparative StudyComparison of Intracranial Pressure and Pressure Reactivity Index Obtained Through Pressure Measurements in the Ventricle and in the Parenchyma During and Outside Cerebrospinal Fluid Drainage Episodes in a Manipulation-Free Patient Setting.
We investigated the effect of cerebrospinal fluid (CSF) drainage on the intracranial pressure (ICP) signal measured in the parenchyma and the ventricle as well as the effect on the pressure reactivity index (PRx) calculated from both signals. ⋯ Drainage of CSF reduces ICP magnitude and amplitude through the EVD. This effect was only marginal in parenchymal ICP measurements. In manipulation-free circumstances, agreement of PRx obtained through parenchymal and ventricular measurements was moderate to good, depending on the statistical method, and was not necessarily influenced by drainage.
-
Acta Neurochir. Suppl. · Jan 2018
ICP Monitoring by Open Extraventricular Drainage: Common Practice but Not Suitable for Advanced Neuromonitoring and Prone to False Negativity.
A drawback in the use of an external ventricular drain (EVD) originates in the fact that draining cerebrospinal fluid (CSF) (open system) and intracranial pressure (ICP) monitoring can be done at the same time but is considered to be unreliable regarding the ICP trace. Furthermore, with the more widespread use of autoregulation monitoring using blood pressure and ICP signals, the question arises of whether an ICP signal from an open EVD can be used for this purpose. Using an EVD system with an integrated parenchymal ICP probe we compared the different traces of an ICP signal and their derived parameters under opened and closed CSF drainage. ⋯ The general practice of draining CSF and monitoring ICP via a (usually open) EVD plus frequently performed catheter closure for ICP reading is feasible for assessment of overall ICP trends. However, it does have clinically relevant drawbacks, namely, a significant amount of undetected increases in ICP above thresholds, and continuous assessment of cerebrovascular autoregulation is less reliable. In conclusion, all patients who need CSF drainage plus ICP monitoring due to the severity of their brain insult need either an EVD with integrated ICP probe or an EVD line plus a separate ICP probe.