Acta neurochirurgica. Supplement
-
Acta Neurochir. Suppl. · Jan 1998
Comparative StudyCerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.
Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. ⋯ During a critical reduction in cerebral perfusion pressure (< 60 mm Hg), PtiO2 decreased measured with both microsensors. Elevation of inspired oxygen fraction, normally followed by a rapid increase in tissue PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.
-
Acta Neurochir. Suppl. · Jan 1998
Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome.
This study investigates the effect of hypoxic brain tissue PO2 on outcome, and examines the incidence of possible causes for cerebral hypoxia. We studied 35 patients with severe head injury (GCS < or = 8). Age was 33.2 (+/- 11.3) years. ⋯ Hypocarbia (ETCO2 < 28 mm Hg) was present in 48.0% of the time of PtiO2 < 10 mm Hg. No obvious cause for cerebral hypoxia was found in 45% of the data. These result underscore the association of cerebral hypoxia with poor neurological outcome and stress the meaning of monitoring of PtiO2 as an independent parameter in patients following TBI.
-
Acta Neurochir. Suppl. · Jan 1998
Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction.
Elevated temperature is known to facilitate neuronal injury after ischemia. After head injury a gradient between temperature and body temperature of up to 3 degrees C higher in the brain has been reported. Hypothermia may limit some of the deleterious metabolic consequences of such increased temperature. ⋯ After MCA stroke, human intracerebral temperature is higher than central body-core temperature. Mild hypothermia in the treatment of severe cerebral ischemia using cooling blankets is safe and does not lead to severe side effects. Mild hypothermia can help to control critically elevated ICP values in severe space-occupying stroke and may improve clinical outcome in these patients.
-
Acta Neurochir. Suppl. · Jan 1998
Effects of mild and moderate hypothermia on cerebral metabolism and glutamate in an experimental head injury.
In this study we sought to determine the optimal brain temperature for treating compression-induced cerebral ischemia. Six cats each were treated with a deep-brain temperature of 37 degrees C (control), 33 degrees C (mild hypothermia), or 29 degrees C (moderate hypothermia). Intracranial pressure (ICP) and cerebral blood flow (CBF) were monitored, as were arteriovenous oxygen difference (AVDO2) and cerebral venous oxygen saturation (ScvO2). ⋯ Reactive hyperemia after balloon deflation was decreased after both mild and moderate hypothermia, as was the tissue volume showing Evans blue dye extravasation. Extracellular glutamate increased in control animals, an effect most effectively suppressed in the mild hypothermia group. These data favor 33 degrees C as the optimal temperature for treating compression-related cerebral ischemia.
-
Acta Neurochir. Suppl. · Jan 1998
Cerebral hemodynamic changes during sustained hypocapnia in severe head injury: can hyperventilation cause cerebral ischemia?
Hyperventilation (HV) is routinely used in the management of increased intracranial pressure (ICP) in severe head injury. However, this treatment continues to be controversial because it has been reported that long-lasting reduced cerebral blood flow (CBF) due to profound sustained hypocapnia may contribute to the development or deterioration of ischemic lesions. Our goal in this study was to analyze the effects of sustained hyperventilation on cerebral hemodynamics (CBF, ICP) and metabolism (arterio jugular differences of lactates = AVDL). ⋯ According to AVDO2 and AVDL, no adverse effects were found during four hours of HV in hyperemic patients. Nevertheless, AVDO2 and AVDL are global measurements and might not detect regional ischemia surrounding focal lesions such as contusions and haematomas. We suggest that monitoring of AVDO2 or other haemometabolic variables should be mandatory when sustained HV is used in the management of head injury patients.