Acta neurochirurgica. Supplement
-
Acta Neurochir. Suppl. · Jan 1998
Decompressive craniectomy in patients with uncontrollable intracranial hypertension.
There has been controversial discussion about the benefits of decompressive craniectomy in patients with critically raised intracranial pressure (ICP) after severe head injury. The aim of this retrospective study was to analyze the results of secondary decompressive craniectomy in patients with uncontrollable raised ICP after maximum aggressive medical treatment. The data of 28 patients (mean age 22 years, range 8-44 years) with severe head injury and posttraumatic cerebral edema were analyzed retrospectively. ⋯ The outcome was classified according to the Glascow Outcome Scale (GOS) after one year. The decompressive crainectomy was performed an average of 68 hours after trauma, and ICP (< 25 mm Hg) decreased always while cerebral perfusion pressure (CPP > 75 mm Hg) improved as well as cerebral blood flow and microcirculation to normal values. 15 patients (56%) had a good outcome after one year (GOS 4 + 5). 5 patients (18%) were severely disabled, 4 patients (14%) remained in vegetative state and 3 patients (11%) died. Decompressive craniectomy should be kept in mind as the last therapeutic step, especially in young patients with head injury and raised ICP, which is not controllable with conservative methods.
-
Acta Neurochir. Suppl. · Jan 1998
Comparative StudyCerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.
Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. ⋯ During a critical reduction in cerebral perfusion pressure (< 60 mm Hg), PtiO2 decreased measured with both microsensors. Elevation of inspired oxygen fraction, normally followed by a rapid increase in tissue PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.
-
Acta Neurochir. Suppl. · Jan 1998
Effects of systemic hypothermia and selective brain cooling on ischemic brain damage and swelling.
The present study investigates the neuroprotective effects of temporary mild systemic hypothermia and selective brain cooling against focal cerebral infarction in the rat and the changes of cortical blood flow, and compares these two treatment modalities. In permanent middle cerebral artery (MCA) model, the treatments were induced 15 min following the artery occlusion. The animals were kept at the desired rectal or brain temperature (about 32 degrees C) for 30 min; (each, n = 6) and for 1 hr (each, n = 6), and then allowed to rewarm spontaneously, whereas control animals were kept at normothermia throughout the experiment. ⋯ However, in the selective brain cooling, the reduced blood flow increased from 40% to 70% of baseline value while the brain was rewarmed. The present study indicates that mild systemic hypothermia has much stronger protective effects against focal cerebral infarction and edema than selective brain cooling. The lack of protective effects of selective brain cooling may be caused by post-cooling cerebral hyperemia in the ischemia area.
-
Acta Neurochir. Suppl. · Jan 1998
Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury.
Neuron specific enolase (NSE) and protein S-100 have previously been described as markers of brain injury. We aimed to discover whether concentrations of either were raised in arterial and jugular venous serum after traumatic brain injury, and whether serum profiles were related to injury severity and neurological outcome. We recruited 22 patients with a traumatic brain injury who were admitted to the intensive care unit. ⋯ There was a small, but significant difference between jugular venous and arterial concentrations of S-100 (p = 0.022). High NSE and S-100 concentrations were significantly related to poor neurological outcome (p = 0.004 and p < 0.001 respectively). Both serum NSE and S-100 may be of some value in helping to predict outcome after a traumatic brain injury.
-
Acta Neurochir. Suppl. · Jan 1998
Interhemispheric pressure gradients in severe head trauma in humans.
Interhemispheric pressure gradients may occur following severe head trauma in patients even in the absence of intracranial space occupying lesions. A higher ICP of the contralateral hemisphere may escape routine unilateral ICP monitoring. ⋯ According to our data with a limited number of patients, interhemispheric pressure gradients seem to occur in the initial posttraumatic phase in some patients, and they seem to resolve following adequate ICP treatment after several hours. Therefore, simultaneous bilateral ICP measurement may be warranted in the initial posttraumatic phase.