Sheng li xue bao : [Acta physiologica Sinica]
-
Because nerve growth factor (NGF) is elevated during inflammation, plays a causal role in the initiation of hyperalgesia, and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult sensory neurons. Using the whole-cell patch-clamp recording technique, exposure of isolated sensory neurons to either 100 ng/mL NGF or 1 mmol/L N-acetyl sphingosine (C2-ceramide) produced a 3-4 fold increase in the number of action potentials (APs) evoked by a ramp of depolarizing current in a time-dependent manner. Intracellular perfusion with bacterial sphingomyelinase (SMase) also increased the number of APs suggesting that the release of native ceramide enhanced neuronal excitability. ⋯ These observations support the idea that the metabolism of ceramide/Sph to S1P is critical for the sphingolipid-induced modulation of excitability. Thus, our findings indicate that the pro-inflammatory agent, NGF, can rapidly enhance the excitability of sensory neurons. This NGF-induced sensitization is mediated by activation of the sphingomyelin signalling pathway wherein intracellular S1P derived from ceramide, acts as an internal second messenger to regulate membrane excitability, however, the effector system whereby S1P modulates excitability remains undetermined.
-
Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family. Its receptor GFRalpha3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia (DRG and TG). These neurons co-express the heat, capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1. ⋯ These findings indicate that artemin can modulate sensory function and that this regulation may occur through changes in channel gene expression. Because artemin mRNA expression is up-regulated in inflamed tissue and following nerve injury, it may have a significant role in cellular changes that underlie pain associated with pathological conditions. Manipulation of artemin expression may therefore offer a new pain treatment strategy.