Sheng li xue bao : [Acta physiologica Sinica]
-
Both genetic and environmental factors are involved in the pathogenesis of Parkinsonos disease (PD). Epidemiological studies showed that environmental factors shared with the common mechanisms of resulting in alpha-synuclein aggregation by inhibiting complex I of mitochondria and leading to oxidative stress. To investigate the relationship between alpha-synuclein and oxidative stress, we used human dopaminergic SH-SY5Y cells transfected with alpha-synuclein-enhanced green fluorescent protein (EGFP). alpha-synuclein gene expression was determined by immunocytochemistry and real-time quantitative PCR. ⋯ Oxidative stress was also found in these cells. Compared with SH-SY5Y cells, SOD activity in SH-SY5Y/Syn cells was increased distinctly (P<0.05) and alpha-synuclein significantly attenuated rotenone-induced cell apoptosis. These results suggest that the alpha-synuclein overexpression in SH-SY5Y cells has a tendency to partially resist oxidative stress induced by rotenone and this response may assist cell survival.
-
To investigate the neuroprotective effects of sevoflurane preconditioning on oxygen-glucose deprivation (OGD) injury and the role of mitochondrial KATP channels in rat, we established OGD injury model in rat hippocampal slices. The brain was rapidly removed, and the dissected hippocampus was sliced in cold artificial cerebrospinal fluid (ACSF) transversely to its longitudinal axis (400 mum thick) with a Rotorslicer DTY-7700. Slices were placed on a nylon mesh in a recording chamber at 34 degrees C and humidified gas mixture (95% O2/5% CO2) was applied to the chamber at a flow rate of 200 ml/min. ⋯ The protective effect of 6% sevoflurane was blocked by 5-HD. Ultrastructural observation in the hippocampal CA1 region of the OGD group showed severe edema of the pyramidal cells, crimpled or ruptured nucleus membranes, aggregation of chromatin, and swelling of mitochondria, whereas these changes were less prominent in 4% and 6% sevoflurane groups. These results suggest that sevoflurane preconditioning is capable to protect neurons from OGD injury in vitro and that the protective effect is related to the activation of mitochondrial K(ATP) channels.
-
The present study aimed to investigate the role of spinal p38 mitogen-activated protein kinase (p38 MAPK) activation in chronic constriction injury (CCI) of the sciatic nerve induced neuropathic pain. CCI model was produced by loosely ligating the left sciatic nerve proximal to the sciatica's trifurcation with 4-0 silk thread in male Sprague-Dawley rat. SB203580, a specific inhibitor of the p38 MAPK, was intrathecally administered on day 5 post-CCI. ⋯ Intrathecal administration of SB203580 dose-dependently reversed the established mechanical allodynia and thermal hyperalgesia induced by CCI. Correlated with behavior results, SB203580 dose-dependently inhibited the CCI-induced increase of the expressions of cytosolic and nuclear p-p38 MAPK and nuclear pCREB in the spinal cord. Taken together, these findings suggest that the activation of p38 MAPK pathway contributes to the development of neuropathic pain induced by CCI, and that the function of p-p38 MAPK may partly be accomplished via the CREB-dependent gene expression.
-
It has been reported that extracellular signal-regulate kinase (ERK) is involved in the modulation of nociceptive information and central sensitization produced by intense noxious stimuli and/or peripheral tissue inflammation. Few studies have explored the relationship between ERK and cAMP response-element binding protein (CREB) in neuropathic pain after nerve injury, such as chronic constriction injury (CCI) of the sciatic nerve. In the present study, CCI model was employed to investigate the activation of ERK on the expression of phosphorylated CREB (pCREB) in chronic neuropathic pain. ⋯ The results showed that intrathecal injection of U0126 or ERK antisense ODN attenuated significantly CCI-induced mechanical and thermal hyperalgesia. Correlating with behavior results, the injection also markedly suppressed the increase of CCI-induced pCREB and c-Fos expression. The results obtained suggest that CREB participates in the pERK-mediated neuropathic pain.
-
The present study was undertaken to explore the role of gamma-aminobutyric acid transporters in the neuropathic pain. On the chronic constriction injury (CCI) rats 4 doses (5, 10, 20, 40 microg in group N5, N10, N20, N40, respectively) of specific gamma-aminobutyric acid transporter-1 inhibitor NO-711 or normal saline (in group NS) were intrathecally administered before sciatic nerve ligation (pre-treatment) or at the third day after ligation (post-treatment). The paw withdrawl latency (PWL) from a noxious thermal stimulus and paw withdrawl mechanical threshold (PWMT) of von Frey filament was used as measure of thermal hyperalgesia and tactile allodynia respectively. ⋯ NO-711 inhibited thermal hyperalgesia induced by CCI in a dose-dependent manner. Intrathecal pretreatment with different doses of NO-711 delayed the occurrence of thermal hyperalgesia, but could not delay the emergence of allodynia induced by CCI. This study indicates that gamma-aminobutyric acid transporter inhibitor has anti-thermal hyperalgesia and anti-tactile allodynia effects in neuropathic rats.