Sheng li xue bao : [Acta physiologica Sinica]
-
Nerve injury produces a long lasting neuropathic pain, manifested as allodynia, a decrease in pain threshold and hyperalgesia, an increase in response to noxious stimuli. The mechanism underlying the lasting abnormal pain is not well understood. Our previous works have shown that electrical tetanic stimulation of the sciatic nerve induces long-term potentiation (LTP) of C-fiber evoked field potentials in the spinal dorsal horn, which is considered as a synaptic model of pathological pain. ⋯ However, when LTP was saturated by several times of electrical tetanic stimulation, nerve transection did not affect the spinal LTP. We conclude that acute nerve injury induces LTP of C-fiber evoked field potentials in intact animals and that nerve transection is more powerful than electrical tetanic stimulation for induction of the spinal LTP. The results further support the notion that LTP of C-fiber evoked field potentials may underlie neuropathic pain.
-
Inhibitory effects of spinal propofol on the responses of spinal dorsal horn neurons in normal rats.
Spinal dorsal horn neurons play an important role in the processing of sensory information and are also targets of modulation by both endogenous and exogenous drugs. Propofol is an intravenous anesthetic and whether it has direct modulatory actions on sensory neuronal responses of the spinal cord dorsal horn has not been well studied. In the present study, a single dose (0.5 micromol) of propofol dissolved in dimethyl sulfoxide (DMSO) was directly applied onto the dorsal surface of the spinal cord and its effect was evaluated in 25 wide-dynamic-range (WDR) neurons and 10 low-threshold mechanoreceptive (LTM) neurons by using extracellular single unit recording technique in sodium pentobarbital anesthetized rats. ⋯ The non-noxious mechanically-evoked responses of both WDR and LTM neurons were significantly suppressed by propofol. The present results indicate that propofol has direct actions on the dorsal horn neurons of the spinal cord in rats. However, since both non-nociceptive and nociceptive afferent-mediated activity can be suppressed, the spinal effects of propofol are not likely to be specifically associated with anti-nociception.
-
Amputation of a segment of the tail produced long-lasting changes in nociception and morphine-induced antinociception. Plastic changes in nociceptive transmission may occur at the spinal cord as well as supraspinal structures after tail amputation. ⋯ Morphine induced facilitation of the hot-plate (HP) response at a low dose and a greater dose of morphine is required to produce complete inhibition of the HP response. Since these effects happen at five weeks after the surgery, tail amputation may serve as a mouse model for studying long-term plastic changes in central nervous system after amputation.
-
Using the latency of paw withdrawal (PWL) from a noxious thermal stimulus as a measure of hyperalgesia, the effects of i.p. injection of meptazinol and its isomers, 112824 and 112825, on carrageenan-induced thermal hyperalgesia were studied in awaked carrageenan-inflamed rats. Peripheral inflammation was induced by intraplantar (i.pl.) injection of carrageenan (2 mg/100 microl) into one hindpaw in rats. Carrageenan produced marked inflammation (edema and erythema) and thermal hyperalgesia in the injected paws, which peaked at 3 h after injection and showed little change in magnitude for another 3 h. ⋯ The results suggest that meptazinol and its isomers have anti-nociceptive and anti-hyperalgesic properties with the former more potent. The effects are mainly mediated by mu opioid receptors. This study provides an important clue for extending clinical utilization of meptazinol and its isomers.
-
By using blind spinal slice whole-cell patch-clamp technique, we observed the influence of etomidate (ET) on synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. Male adult Sprague-Dawley rats (7~8 weeks old) were anaesthetized with urethane (1.2 g/kg, i.p.), and then lumbosacral laminectomy was performed. The lumbosacral spinal cord (L1~S3) was removed and placed in preoxygenated Krebs solution at 1~3 degrees C. ⋯ ET prolonged the decay time of GABAergic mIPSC by 45.57+/-12.46% (P<0.05), but did not influence the frequency and amplitude of GABAergic mIPSC, when compared with the control. (3) To see whether or not ET has any effects on the local mIPSC mediated by glycine receptor, the holding potential was also set up at 0 mV, and under this condition extracellular superfusion was made with 1 mmol/L TTX and 10 mmol/L bicuculline, an antagonist also set up at 0 mV, and under this condition extracellular superfusion was made with 1 micromol/L TTX and 10 micromol/L bicuculline, an antagonist of GABA(A) receptor, for 2 min, and then with consistent application of 50 micromol/L ET, 1 micromol/L TTX and 10 micromol/L bicuculline for 1 min. ET had no effects on decay time, frequency and amplitude of glycinergic mIPSC. The above-mentioned results show that ET plays anesthetic or analgesic roles by modulating the decay time of GABAergic mIPSC, i.e. by prolonging the mean open time of GABA(A) receptors, however, ET has no direct effect on local excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord.