Journal of clinical monitoring
-
Respiratory oxygen, carbon dioxide, and nitrous oxide concentrations were recorded in 20 patients breath-by-breath during general anesthesia and early recovery, using the Cardiocap multiparameter monitor. Several approved maneuvers were performed to demonstrate the usefulness of endtidal oxygen measurement. "Oxygrams" provided by the fast paramagnetic oxygen sensor confirmed the capnometric information in the diagnosis of hypoventilation, apnea, and disconnections. In one patient, the alarm for inspiratory oxygen concentration, set at 18%, appeared to prevent alveolar hypoxia and low arterial saturation from occurring when oxygen instead of nitrous oxide was turned off. ⋯ Changes in nitrous oxide concentration often complemented oxygen-related information obtained in our observations. In the recovery room, a decrease in end-tidal oxygen concentration preceded low pulse oximetry readings. Therefore, it is suggested that all three gases should be monitored continuously to prevent mishaps related to insufficient ventilation and inappropriate gas concentrations during anesthesia and immediate recovery.
-
The need to incorporate alarms in monitoring systems is related to the growing complexity of monitoring and the large number of variables. For sophisticated alarms, information about the inputs to the patient is of importance; for example, clinical interventions such as drug administration and ventilation readjustment need to be known to the monitoring system. Alarms are triggered by signals or signal features that exceed thresholds. ⋯ Approaches to determine such levels automatically are discussed in this article. Most promising seems the multiple signal approach using an expert system. It seems reasonable to expect that information concerning alarm limits, needed for the operation of knowledge-based alarm systems, may come from integrated departmental data bases.
-
Patients receiving intraspinal opiates should be monitored in the intensive care unit for at least 24 hours to prevent potentially lethal outcomes. These include respiratory depression caused by sequestration of the morphine in the cerebrospinal fluid and migration of epidural catheters in the subarachnoid or intravascular space. At this time, most hospitals are not equipped or staffed adequately to guarantee the safety of these patients outside the intensive care unit.
-
An alarm algorithm was developed to monitor the ventilator on the National Aeronautics and Space Administration space station. The algorithm automatically identifies and interprets critical events so that an untrained user can manage the mechanical ventilation of a critically injured crew member. The algorithm was tested in two healthy volunteers by simulating 260 critical events in each volunteer while the volunteer breathed via the ventilator. ⋯ The alarm textual messages were correct 98% (505 of 516 messages) of the time. The alarm algorithm is an improvement over current alarms found on most ventilators because its alarm messages specifically identify failures in the patient breathing circuit or ventilator. The system may improve patient care by helping critical care personnel respond more rapidly and correctly to critical events.