Handbook of experimental pharmacology
-
A series of government actions have evolved since the 1990s to facilitate the development of medicinal products for pediatric use using a combination of incentives and mandates. The initiatives have been successful in stimulating activity and interest in products developed for pediatric use. The initiatives continue to evolve as experience accumulates and regulatory agencies develop robust cooperative programs. A multidimensional program is necessary to achieve the necessary goal of aligning pediatric therapeutics with adult therapeutics and providing children the most favorable opportunity to benefit and minimize risk to vulnerable populations.
-
Handb Exp Pharmacol · Jan 2009
ReviewCough sensors. II. Transient receptor potential membrane receptors on cough sensors.
The transient receptor potential (TRP) family of channels is represented by at least six members in primary sensory neurons. These include the TRP vanilloid subtypes 1 (TRPV1), 2, 3, and 4, the cold and menthol receptor TRPM8, and TRPA1. ⋯ Evidence in experimental animals and in patients with airway diseases indicates a marked hypersensitivity to cough induced by TRPV1 agonists. Recent studies with newly developed high-affinity and selective TRPV1 antagonists have revealed that TRPV1 inhibition reduces cough induced by citric acid or antigen challenge.
-
Neuropathic pain syndromes, i.e., pain after a lesion or disease of the peripheral or central nervous system, are clinically characterized by spontaneous pain (ongoing, paroxysms) and evoked types of pain (hyperalgesia, allodynia). A variety of distinct pathophysiological mechanisms in the peripheral and central nervous system operate in concert: In some patients the nerve lesion triggers molecular changes in nociceptive neurons that become abnormally sensitive and develop pathological spontaneous activity (upregulation of sodium channels and receptors, e.g., vanilloid TRPV1 receptors, menthol-sensitive TRPM8 receptors, or alpha-receptors). These phenomena may lead to spontaneous pain, shooting pain sensations, as well as heat hyperalgesia, cold hyperalgesia, and sympathetically maintained pain. ⋯ Therefore, a new hypothetical concept was proposed in which pain is analyzed on the basis of underlying mechanisms. The increased knowledge of pain-generating mechanisms and their translation into symptoms and signs may in the future allow a dissection of the mechanisms that operate in each patient. If a systematic clinical examination of the neuropathic pain patient and a precise phenotypic characterization is combined with a selection of drugs acting against those particular mechanisms, it should ultimately be possible to design optimal treatments for the individual patient.
-
Adenosine (Ado) regulates diverse cellular functions in the lung through its local production, release, metabolism, and subsequent stimulation of G-protein-coupled P1 purinergic receptors. The A(2B) adenosine receptor (A(2B)AR) is the predominant P1 purinergic receptor isoform expressed in surface airway epithelia, and Ado is an important regulator of airway surface liquid (ASL) volume through its activation of the cystic fibrosis transmembrane conductance regulator (CFTR). Through a delicate balance between sodium (Na(+)) absorption and chloride (Cl(-)) secretion, the ASL volume is optimized to promote ciliary activity and mucociliary clearance, effectively removing inhaled particulates. ⋯ Adenosine triphosphate (ATP) also regulates transepithelial Cl(-) conductance, but through a separate system that relies on stimulation of P2Y(2) purinergic receptors, mobilization of intracellular calcium, and activation of calcium-activated chloride channels (CaCCs). These pathways remain functional in CF, and may serve a protective role in the disease. In this chapter, we will review our current understanding of how Ado and related nucleotides regulate CFTR and Cl(-) conductance in the human airway, including the regulation of additional intracellular and extracellular signaling pathways that provide important links between ion transport and inflammation relevant to the disease.