Handbook of experimental pharmacology
-
Recent interest in the use of low-flow or closed circuit anesthesia has rekindled interest in the pharmacokinetics of inhaled anesthetics. The kinetic properties of inhaled anesthetics are most often modeled by physiologic models because of the abundant information that is available on tissue solubilities and organ perfusion. These models are intuitively attractive because they can be easily understood in terms of the underlying anatomy and physiology. ⋯ Finally, we will reintroduce the concept of the general anesthetic equation to explain why the use of low-flow or closed circuit anesthesia has rekindled interest in the modeling of pharmacokinetics of inhaled anesthetics. Clinical applications of some of these models are reviewed. A basic understanding of the circle system is required, and will be provided in the introduction.
-
The release of transmitters through vesicle exocytosis from nerve terminals is not constant but is subject to modulation by various mechanisms, including prior activity at the synapse and the presence of neurotransmitters or neuromodulators in the synapse. Instantaneous responses of postsynaptic cells to released transmitters are mediated by ionotropic receptors. In contrast to metabotropic receptors, ionotropic receptors mediate the actions of agonists in a transient manner within milliseconds to seconds. ⋯ As these receptors display greatly diverging structural and functional features, a variety of different mechanisms are involved in the regulation of transmitter release via presynaptic ionotropic receptors. This text gives an overview of presynaptic ionotropic receptors and briefly summarizes the events involved in transmitter release to finally delineate the most important signaling mechanisms that mediate the effects of presynaptic ionotropic receptor activation. Finally, a few examples are presented to exemplify the physiological and pharmacological relevance of presynaptic ionotropic receptors.
-
It belongs to the particularities of anaesthesia that the conscious response of the patient to drug therapy is not available for the adjustment of drug therapy and that the side-effects of anaesthetic drug therapy would be in general lethal if no special measures were taken such as artificial ventilation. Both conditions do not allow for a slow, time-consuming titration of drug effect towards the therapeutically effective window, but measures have to be taken to reach a therapeutic target fast (within seconds to a few minutes), reliably, and with precision. ⋯ Whereas TCI presents an open-loop dosing strategy (the past output does not influence the future input), current research deals with the model-based adaptive closed-loop administration of anaesthetics. In these systems the past output is used to adapt and individualize the initial pk-pd model to the patients and thus has an influence on future drug dosing which is based on the adapted model.
-
Handb Exp Pharmacol · Jan 2008
ReviewInhibitory ligand-gated ion channels as substrates for general anesthetic actions.
General anesthetics have been in clinical use for more than 160 years. Nevertheless, their mechanism of action is still only poorly understood. In this review, we describe studies suggesting that inhibitory ligand-gated ion channels are potential targets for general anesthetics in vitro and describe how the involvement of y-aminobutyric acid (GABA)(A) receptor subtypes in anesthetic actions could be demonstrated by genetic studies in vivo.
-
The heart has a strong endogenous cardioprotection mechanism that can be triggered by short periods of ischaemia (like during angina) and protects the myocardium during a subsequent ischaemic event (like during a myocardial infarction). This important mechanism, called ischaemic pre-conditioning, has been extensively investigated, but the practical relevance of an intervention by inducing ischaemia is mainly limited to experimental situations. Research that is more recent has shown that many volatile anaesthetics can induce a similar cardioprotection mechanism, which would be clinically more relevant than inducing cardioprotection by ischaemia. ⋯ Since ischaemia-reperfusion of the heart routinely occurs in a variety of clinical situations such as during transplant surgery, coronary artery bypass grafting, valve repair or vascular surgery, anaesthetic-induced cardioprotection might be a promising option to protect the myocardium in clinical situations. Initial studies now confirm an effect on surrogate outcome parameters such as length of ICU or in-hospital stay or post-ischaemic troponin release. In this chapter, we will summarize our current understanding of the three mechanisms of anaesthetic cardioprotection exerted by inhalational anaesthetics.