Handbook of experimental pharmacology
-
It belongs to the particularities of anaesthesia that the conscious response of the patient to drug therapy is not available for the adjustment of drug therapy and that the side-effects of anaesthetic drug therapy would be in general lethal if no special measures were taken such as artificial ventilation. Both conditions do not allow for a slow, time-consuming titration of drug effect towards the therapeutically effective window, but measures have to be taken to reach a therapeutic target fast (within seconds to a few minutes), reliably, and with precision. ⋯ Whereas TCI presents an open-loop dosing strategy (the past output does not influence the future input), current research deals with the model-based adaptive closed-loop administration of anaesthetics. In these systems the past output is used to adapt and individualize the initial pk-pd model to the patients and thus has an influence on future drug dosing which is based on the adapted model.
-
The actions of benzodiazepines are due to the potentiation of the neural inhibition that is mediated by gamma-aminobutyric acid (GABA). Practically all effects of the benzodiazepines result from their actions on the ionotropic GABA(A) receptors in the central nervous system. Benzodiazepines do not activate GABA(A) receptors directly but they require GABA. ⋯ In addition to pharmacokinetic interactions, benzodiazepines have synergistic interactions with other hypnotics and opioids. Midazolam, diazepam and lorazepam are widely used for sedation and to some extent also for induction and maintenance of anaesthesia. Flumazenil is very useful in reversing benzodiazepine-induced sedation as well as to diagnose or treat benzodiazepine overdose.
-
Handb Exp Pharmacol · Jan 2008
ReviewHypnotic and opioid anesthetic drug interactions on the CNS, focus on response surface modeling.
This chapter will present the conceptual and applied approaches to capture the interaction of anesthetic hypnotic drugs with opioid drugs, as used in the clinical anesthetic state. The graphic and mathematical approaches used to capture hypnotic/opiate anesthetic drug interactions will be presented. This chapter is not a review article about interaction modeling, but focuses on specific drug interactions within a quite narrow field, anesthesia.
-
There are two optical isomers of the 2-(2-chlorophenyl)-2-(methylamino)-cyclohexanone ketamine: S(+) ketamine and R(-) ketamine. Effects of this drug are mediated by N-methyl-d-aspartate (NMDA), opioid, muscarinic and different voltage-gated receptors. Clinically, the anaesthetic potency of the S(+)-isomer is approximately three to four times that of the R(-)-isomer, which is attributable to the higher affinity of the S(+)-isomer to the phencyclidine binding sites on the NMDA receptors. ⋯ The combination of ketamine with midazolam or propofol can be extremely useful and safe for sedation and pain relief in intensive care patients, especially during sepsis and cardiovascular instability. In the treatment of chronic pain ketamine is effective as a potent analgesic or substitute together with other potent analgesics, whereby it can be added by different methods. There are some important patient side-effects, however, that limit its use, whereby psycho-mimetic side-effects are most common.
-
Most opioids used in anaesthesia are of the anilidopiperidine family, including fentanyl, alfentanil, sufentanil and remifentanil. While all share similar pharmacological properties, remifentanil, the newest one, is probably the most original, which is the reason this review focusses especially on this drug. ⋯ Consequently, it offers a unique titratability when its effects need to be quickly achieved or suppressed, but it requires specific drug delivery schemes such as continuous infusion, target-controlled infusion and anticipated postoperative pain treatment. Kinetic differences between opioids used in anaesthesia and some clinical uses of remifentanil are reviewed in this chapter.