Handbook of experimental pharmacology
-
Handb Exp Pharmacol · Jan 2015
ReviewH2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals.
Hydrogen sulfide (H2S) formed by multiple enzymes including cystathionine-γ-lyase (CSE) targets Cav3.2 T-type Ca2+ channels (T-channels) and transient receptor potential ankyrin-1 (TRPA1). Intraplantar and intracolonic administration of H2S donors promotes somatic and visceral pain, respectively, via activation of Cav3.2 and TRPA1 in rats and/or mice. Injection of H2S donors into the plantar tissues, pancreatic duct, colonic lumen, or bladder causes T-channel-dependent excitation of nociceptors, determined as phosphorylation of ERK or expression of Fos in the spinal dorsal horn. ⋯ In rats with neuropathy induced by L5 spinal nerve cutting or by repeated administration of paclitaxel, an anticancer drug, the neuropathic hyperalgesia is reversed by inhibitors of CSE or T-channels and by silencing of Cav3.2. Upregulation of Cav3.2 protein in DRG is detectable in the former, but not in the latter, neuropathic pain models. Thus, H2S appears to function as a nociceptive messenger by facilitating functions of Cav3.2 and TRPA1, and the enhanced function of the CSE/H2S/Cav3.2 pathway is considered to be involved in the pancreatitis- and cystitis-related pain and in neuropathic pain.
-
Recent studies have made significant progress in the knowledge of how itch sensation is processed, especially the molecular identity of neurons involved in itch signaling, both in the dorsal root ganglion and spinal cord. Despite these advances, the organization of these neurons in dorsal spinal cord circuits and how they interact with other somatosensory modalities, such as pain or temperature, remain relatively unexplored. ⋯ Here we describe the discovery of B5-I neurons, a population of inhibitory interneurons that function to inhibit itch, and review the evidence that these neurons mediate the inhibition of itch by counter stimuli. These studies are helping to solve the long-standing question of why itch makes us scratch.
-
The antiepileptic potential of Cannabis sativa preparations has been historically recognized. Recent changes in legal restrictions and new well-documented cases reporting remarkably strong beneficial effects have triggered an upsurge in exploiting medical marijuana in patients with refractory epilepsy. Parallel research efforts in the last decade have uncovered the fundamental role of the endogenous cannabinoid system in controlling neuronal network excitability raising hopes for cannabinoid-based therapeutic approaches. ⋯ To support translation from anecdote-based practice to evidence-based therapy, the present review first introduces current preclinical and clinical efforts for cannabinoid- or endocannabinoid-based epilepsy treatments. Next, recent advances in our knowledge of how endocannabinoid signaling limits abnormal network activity as a central component of the synaptic circuit-breaker system will be reviewed to provide a framework for the underlying neurobiological mechanisms of the beneficial and adverse effects. Finally, accumulating evidence demonstrating robust synapse-specific pathophysiological plasticity of endocannabinoid signaling in epileptic networks will be summarized to gain better understanding of how and when pharmacological interventions may have therapeutic relevance.
-
It is evident that chronic pain can modify the excitability of central nervous system which imposes a specific challenge for the management and for the development of new analgesics. The central manifestations can be difficult to quantify using standard clinical examination procedures, but quantitative sensory testing (QST) may help to quantify the degree and extend of the central reorganization and effect of pharmacological interventions. Furthermore, QST may help in optimizing the development programs for new drugs. ⋯ As most of the drug development programs in the area of pain management have not been very successful, the pharmaceutical industry has started to utilize the complementary knowledge obtained from QST profiling. Linking patients QST profile with drug efficacy profile may provide the fundamentals for developing individualized, targeted pain management programs in the future. Linking QST-assessed pain mechanisms with treatment outcome provides new valuable information in drug development and for optimizing the management regimes for chronic pain.
-
Nociceptors and neurons in the central nervous system (CNS) that receive nociceptive input show remarkable plasticity in response to injury. This plasticity is thought to underlie the development of chronic pain states. Hence, further understanding of the molecular mechanisms driving and maintaining this plasticity has the potential to lead to novel therapeutic approaches for the treatment of chronic pain states. ⋯ Moreover, we discuss how commonly utilized analgesics, such as opioids, enhance priming therefore potentially contributing to the development of persistent pain states. Finally we highlight where these priming models draw parallels to common human chronic pain conditions. Collectively, these advances in our understanding of pain plasticity reveal a variety of targets for therapeutic intervention with the potential to reverse rather than palliate chronic pain states.