Handbook of experimental pharmacology
-
Recent studies have made significant progress in the knowledge of how itch sensation is processed, especially the molecular identity of neurons involved in itch signaling, both in the dorsal root ganglion and spinal cord. Despite these advances, the organization of these neurons in dorsal spinal cord circuits and how they interact with other somatosensory modalities, such as pain or temperature, remain relatively unexplored. ⋯ Here we describe the discovery of B5-I neurons, a population of inhibitory interneurons that function to inhibit itch, and review the evidence that these neurons mediate the inhibition of itch by counter stimuli. These studies are helping to solve the long-standing question of why itch makes us scratch.
-
It is evident that chronic pain can modify the excitability of central nervous system which imposes a specific challenge for the management and for the development of new analgesics. The central manifestations can be difficult to quantify using standard clinical examination procedures, but quantitative sensory testing (QST) may help to quantify the degree and extend of the central reorganization and effect of pharmacological interventions. Furthermore, QST may help in optimizing the development programs for new drugs. ⋯ As most of the drug development programs in the area of pain management have not been very successful, the pharmaceutical industry has started to utilize the complementary knowledge obtained from QST profiling. Linking patients QST profile with drug efficacy profile may provide the fundamentals for developing individualized, targeted pain management programs in the future. Linking QST-assessed pain mechanisms with treatment outcome provides new valuable information in drug development and for optimizing the management regimes for chronic pain.
-
Handb Exp Pharmacol · Jan 2015
ReviewThe role of glia in the spinal cord in neuropathic and inflammatory pain.
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. ⋯ Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
-
Handb Exp Pharmacol · Jan 2015
ReviewEndocannabinoids and the Cardiovascular System in Health and Disease.
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. ⋯ However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
-
Inhibitory interneurons, which use GABA and/or glycine as their principal transmitter, have numerous roles in regulating the transmission of sensory information through the spinal dorsal horn. These roles are likely to be performed by different populations of interneurons, each with specific locations in the synaptic circuitry of the region. ⋯ Several mechanisms have been proposed for this disinhibition, including death of inhibitory interneurons, decreased transmitter release, diminished activity of these cells and reduced effectiveness of GABA and glycine as inhibitory transmitters. However, despite numerous studies on this important topic, it is still not clear which (if any) of these mechanisms contributes to neuropathic pain after nerve injury.