Handbook of experimental pharmacology
-
Handb Exp Pharmacol · Jan 2015
ReviewEndocannabinoids and the Cardiovascular System in Health and Disease.
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. ⋯ However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
-
Handb Exp Pharmacol · Jan 2015
ReviewH2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals.
Hydrogen sulfide (H2S) formed by multiple enzymes including cystathionine-γ-lyase (CSE) targets Cav3.2 T-type Ca2+ channels (T-channels) and transient receptor potential ankyrin-1 (TRPA1). Intraplantar and intracolonic administration of H2S donors promotes somatic and visceral pain, respectively, via activation of Cav3.2 and TRPA1 in rats and/or mice. Injection of H2S donors into the plantar tissues, pancreatic duct, colonic lumen, or bladder causes T-channel-dependent excitation of nociceptors, determined as phosphorylation of ERK or expression of Fos in the spinal dorsal horn. ⋯ In rats with neuropathy induced by L5 spinal nerve cutting or by repeated administration of paclitaxel, an anticancer drug, the neuropathic hyperalgesia is reversed by inhibitors of CSE or T-channels and by silencing of Cav3.2. Upregulation of Cav3.2 protein in DRG is detectable in the former, but not in the latter, neuropathic pain models. Thus, H2S appears to function as a nociceptive messenger by facilitating functions of Cav3.2 and TRPA1, and the enhanced function of the CSE/H2S/Cav3.2 pathway is considered to be involved in the pancreatitis- and cystitis-related pain and in neuropathic pain.
-
Recent studies have made significant progress in the knowledge of how itch sensation is processed, especially the molecular identity of neurons involved in itch signaling, both in the dorsal root ganglion and spinal cord. Despite these advances, the organization of these neurons in dorsal spinal cord circuits and how they interact with other somatosensory modalities, such as pain or temperature, remain relatively unexplored. ⋯ Here we describe the discovery of B5-I neurons, a population of inhibitory interneurons that function to inhibit itch, and review the evidence that these neurons mediate the inhibition of itch by counter stimuli. These studies are helping to solve the long-standing question of why itch makes us scratch.
-
Handb Exp Pharmacol · Jan 2014
ReviewGreat expectations: the placebo effect in Parkinson's disease.
Our understanding of the neural mechanisms underlying the placebo effect has increased exponentially in parallel with the advances in brain imaging. This is of particular importance in the field of Parkinson's disease, where clinicians have described placebo effects in their patients for decades. ⋯ Neuroimaging studies have demonstrated that placebos stimulate the release of dopamine in the striatum of patients with Parkinson's disease and can alter the activity of dopamine neurons using single-cell recording. When taken together with the findings from other medical conditions discussed elsewhere in this publication, a unified mechanism for the placebo effect in Parkinson's disease is emerging that blends expectation-induced neurochemical changes and disease-specific nigrostriatal dopamine release.
-
Handb Exp Pharmacol · Jan 2014
ReviewHow positive and negative expectations shape the experience of visceral pain.
Knowledge from placebo and nocebo research aimed at elucidating the role of treatment expectations and learning experiences in shaping the response to visceral pain fills an important research gap. First, chronic abdominal pain, such as in irritable bowel syndrome (IBS), is highly prevalent, with detrimental individual and socioeconomic impact and limited effective treatment options. At the same time, IBS patients show high placebo response rates in clinical trials and benefit from placebo interventions. ⋯ Hence, the study of nocebo and placebo effects in visceral pain constitutes a model to assess the contribution of psychological factors. Herein, the clinical relevance of visceral pain is introduced with a focus on IBS as a bio-psycho-social disorder, followed by a review of existing clinical and experimental work on placebo and nocebo effects in IBS and in clinically relevant visceral pain models. Finally, emerging research trends are highlighted along with an outlook regarding goals for ongoing and future research.