Handbook of experimental pharmacology
-
Individuals undergoing treatment for a symptom like pain expect that the treatment will reduce the pain. Many studies show that healthy volunteers or patients in pain report less pain after inactive treatment, if they believe that active medication has been administrated. The reduction of pain can be partly blocked by systemic administration of naloxone, an opioid antagonist. ⋯ The nocebo effect is the opposite of the placebo effect, and is due to induction of negative emotions. Part of the treatment of many symptoms and diseases is due to autonomic adjustments controlled by the central nervous system. The involvement of emotional processes in placebo effects could have important consequences for interpretation of data from randomized controlled trials.
-
Handb Exp Pharmacol · Jan 2014
ReviewProbing gating mechanisms of sodium channels using pore blockers.
Several classes of small molecules and peptides bind at the central pore of voltage-gated sodium channels either from the extracellular or intracellular side of the membrane and block ion conduction through the pore. Biophysical studies that shed light on the chemical nature, accessibility, and kinetics of binding of these naturally occurring and synthetic compounds reveal a wealth of information about how these channels gate. Here, we discuss insights into the structural underpinnings of gating of the channel pore and its coupling to the voltage sensors obtained from pore blockers including site 1 neurotoxins and local anesthetics.
-
Handb Exp Pharmacol · Jan 2014
ReviewAnimal toxins influence voltage-gated sodium channel function.
Voltage-gated sodium (Nav) channels are essential contributors to neuronal excitability, making them the most commonly targeted ion channel family by toxins found in animal venoms. These molecules can be used to probe the functional aspects of Nav channels on a molecular level and to explore their physiological role in normal and diseased tissues. This chapter summarizes our existing knowledge of the mechanisms by which animal toxins influence Nav channels as well as their potential application in designing therapeutic drugs.
-
Placebo analgesia has become a well-studied phenomenon that encompasses psychology, physiology and pharmacology. In this chapter we explore the complex interactions between these disciplines in order to argue that the placebo response is more than a simple change in perception but is a cognitive style driven by prior expectations. ⋯ This altered sensation can be attributed to personality traits, altered error monitoring processes, changes in anticipatory responses to pain and activation of the endogenous opioid system. In conclusion we discuss how altered sensory processing by descending pain modulation may play a part in placebo analgesia and how the loss of the brains prefrontal regions can make it impossible to have a placebo response.
-
Recent substantial laboratory and theoretical research hints for different learning mechanisms regulating the formation of placebo and nocebo responses. Moreover, psychological and biological variants may play a role as modulators of learning mechanisms underlying placebo and nocebo responses. In this chapter, we present pioneering and recent human and nonhuman research that has impressively increased our knowledge of learning mechanisms in the context of placebo and nocebo effects across different physiological processes and pathological conditions.